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EVALUATION

This effort continues the successful development of a software proof of
correctness system started under F30602-75-C-0042, the Rugged Programming
Environment. Where this first effort proved the feasibility of applying
the proof of correctness concept to a JOVIAL-like Higher Order Language,
the current effort applied it to essentially the whole JOVIAL (JOCIT)
language. And in doing so, SRI, the contractor, increased the working
efficiency, flexibility, and usability by their software rewrite and inclusion
of philosophical and user oriented features. These factors, together with
the movement of the rewritten files to the RADC Multics System (which was
done beyond the intended scope of the statement of work) now allows access-—
ibility to two sources, the SRI TENEX system and the RADC Multics system,
for the serious user to attempt verification of his JOVIAL programs. While
the system is yet to be simplified so that the general programmer can
conveniently access it, it is a major tool for inclusion in the Disciplined

Programming Environment being developed under RADC's Software Cost Reduction

Program.

JOHY' M. IVES, Captain, USAF
ject Engineer
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I  INTRODUCTION AND CONCLUSIONS

This report describes our second year of research and development effort
aimed at making formal proof of program correctness by means of inductive
assertions a practical technique for JOVIAL programming. During the first
year (September 1974 - October 1975), we developed a pilot system--the Rugged
Programming Environment (RPE/1), written in INTERLISP, capable of formally
verifying small programs written in a 1limited subset of JOVIAL. Having
demonstrated the feasibility of proving correctness for a limited =subset of
JOVIAL programs, we set out in April 1976 to extend the power, utility, and

general capabilities of our verifier in several directions.

The RPE/1 and RPE/2 verifiers have much the same overall structure.
Both versions employ the method of correctness proof by inductive assertions.

There are three major subsystems,

% Parser/transducer
® Verification condition generator

* Deductive system

The parser/transducer and verification condition generator together
constitute the input processor of the verification system. The RPE/2
parser/transducer accepts a JOCIT program (annotated with input/output
specifications and inductive assertions) from a text file, parses 1it, and
saves the parsed version on 2 new file. The purpose of the verification
condition generator (VCG) is to analyze this parsed form of the program,
thereby creating a set of formulas in first-order predicate calculus whose
valdity is a sufficient condition for consistency of the program with its
specifications. The parser incorporates a complete syntactic
characterization of JOCIT, while the VCG embodies knowledge of JOCIT

semantics in order to gZenerate the verification conditions (VCs).




The deductive system carries out the actual proof of validity of VCs
under user guidance, making use of several subsystems for performing special
kinds of deductive inference. The top-level of the deductive system, with
which the user interacts, is a proof supervisor executive based on the method
of analytic tableaux [16]. This Tableaux Executive also provides for the
display of the dynamic proof state, maintains an audit trail for future
examination of the details of the proof, and can save partial proofs for
future completion. VCs that are propositionally valid are handled entirely
by the tableaux executive acting in a completely automatic mode. Formulas
involving 1logical quantifiers are either handled automatically by the
tableaux system, or by user-supplied instantiation. A mechanism is also
provided in the Tableaux Proof System for the invocation of axioms or
previously proved formulas, with instantiations of free variables supplied by
the system user. Formulas whose validity depends on the interpretation of
equality/inequality relations, algebraic operations, or function symbols can
be demonstrated by user invocation of either (a), a specialized decision
mechanism for an extension of Presburger arithmetic, or (b), an expression
simplifier for algebraic formulas which need not be limited to Presburger
arithmetic. The Presburger mechanism also constructs concrete numerical
counterexamples for invalid formulas. Both subsystems (a) and (b) are
essentially automatic, once they have been invoked by the user through the

Tableaux Executive.

Communication between the three major subsystems of the verifier takes
place by the creation and reading of files, i.e., the original JOCIT program

to be verified, the parsed form of the program, and the VCs for that program.

Our efforts were devoted to four major tasks, which may be summarized as

follows:

® Task A - Modify the input processor to handle as much as
possible of JOVIAL (JOCIT version).

* Task B - Increase the overall speed of verification by at least
a factor of 2, and if possible by a factor of 5.

® Task C - Greatly enhance the ease of user interaction with the
system by developing facilities for carrying out and saving
partial proofs of programs, for extending the assertion
language, and for enabling top-down/bottom-up proofs for well-
structured programs.




* Task D - Begin transfer of our verification technology to the
Air Force by implementing enough of the verification system on
the RADC-MULTICS computer to permit verification of a simple
program entirely on that machine.

The structure of this report reflects these tasks: the next four
sections deal with the issues involved in meeting the respective requirements

of the four tasks.
The main accomplishments of this project have been:

* The extension of program verification techniques for the first
time to a large, fairly complex, real programming language in
wide current use, and the demonstration of their [easibility in
that domain.

* The development of an extremely flexible deductive system that,
without compromising generality or processing speed, is able to
handle user-guided hierarchical proofs of correctness, has
facilities for saving and reentering partial proofs, and is
easily integrated with special-purpose deduction modules.

The development and implementation of a new, efficient algorithm
for deciding validity for a large class of mathematical
formulas. (The formulas are in an extension of universal
Presburger arithmetic, described in Section III, Subsection C.)
This algorithm also constructs numerical counterexamples for
invalid formulas supplied to it.

Section II describes the modification of the parser/transducer to
accommodate JOCIT syntax (except for certain implementation-dependent
features), and the extension of the verification condition generator to
handle the semantics of all features specifically required by the Work

Statement as well as a good many others.

Section I1I deals with the modifications we made to increase the speed
of verification, both in the machine time and the user time required. It
also presents some measurements of the time required for each of the phases
of verification. An overall speedup by a factor of approximately 27 compared

to the RPE/1 system very amply fulfilled the goal of Task B.

Section IV describes the interactive features that have been added to
the system. Most of these are concerned with user interaction in the
dedustive system. The RPE/1 system attempted to use a set of automatically

invoked, fixed deductive strategies incorporated in a "goal-driven" deductive




system. That system turned out to be both extremely slow and cumbersome for
all but the simplest deductions. It was also incapable of handling logical
quantifiers or of instantiating axioms (except those built-in as procedural
strategies). The RPE/2 deductive system is based on the method of analytic
tableaux (g.v. Section IV, Subsection B) and eliminated many deficiencies of
its predecessor. A simpler version of analytic tableaux had been implemented
under RPE/1, but it had not been integrated with other deduction tocols. Most
of the increase in speed of user interaction with the system was due to this
improved tableaux facility. Another aspect of user interaction discussed in
Section IV is the user facilities associated with procedural abstraction and
the carrying out of top-down (or bottom-up) proofs for suitably structured

programs.

Finally, Section V describes the steps that led to the carrying out of a
sample verification on the RADC-MULTICS Honeywell 6180 computer. This
required rewriting the system in MACLISP, transferring system files to RADC-
MULTICS, and actually demonstrating the system. This section of the report
also includes a detailed discussion of some supporting software (developed in
part under this contract) that greatly facilitated the actual translation
process--so much so that it became feasible to translate the final RPE/2

system, instead of simply the much more primitive RPE/1 version.

Appendix A shows a detailed BNF grammar for JOCIT developed in

connection with Task A.

Appendix B is a glossary of the deductive system including the commands

that the user can issue and the parameters that the user can set.
Appendix C details a verification run at RADC-MULTICS.

The two years we have devoted to the development of practical
verification tools for JOVIAL have led us to the following conclusions:

® Program verification continues to be a promising technique
which, when used in conjunction with modern structured design
and formal specification methodologies, will ultimately reduce
the cost of developing and maintaining Air Force software
systems.

* Program verification is applicable to complex real=-world
languages such as JOVIAL. The associated problems of applying




verification to such 1languages--the development of supporting
parsers and verification condition generators--can be solved in
straight forward ways with existing technology. It 1is also
straight forward to use languages such as JOVIAL harmoniously
with formal design disciplines such as the SRI Hierarchical
Methodology [13].

* The bottleneck in developing an automatic verification
technology 1is the development of more potent deductive
mechanisms than are currently available. A related problem area
is the difficulty of inventing the inductive assertions required
for correctness proofs. The development of more powerful
deduction tools will do much to overcome this problem. This
area has great promise and potential but urgently needs further
attention.

®# Given the lack of a competent automatic deduction system for the
mathematics of computer programs, the use of verification
technology in practice requires the development of semiautomatic
deductive facilities. The user interface of =such facilities
must be carefully engineered to permit flexible and informed
user control over the myriad details of program theorem proving.
The Tableaux Proof System is a major step toward such
facilities.

Consequently, we hope to continue our efforts in three major areas.
First, we will expand the deductive facilities of the system. In particular,
we will increase the sophistication of our techniques for supervising
interactive proofs, enhance the power of the automatic deductive mechanisms
in areas such as quantification, nonlinear arithmetic (q.v. Section I1I,

Subsection C), and canonical form rewriting systems.

Second, we will couple modern design techniques such as [13] and [9]
with our verification system. This will involve developing a superset of the
JOCIT language allowing the implementation of programs with hierarchical and
modular structure. We intend to describe how advanced design tools under
development at SRI, such as [14], can be applied to this superset language to

provide a coherent environment for designing verifiable modular programs.

Third, we intend to tune and make robust all aspects of user interaction
with the system to maximize ease of use. A major design criterion will be to

develop a system that can be widely used outside of SRI.
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II  MODIFICATIONS TO THE INPUT PROCESSOR

A.  Introduction

Task A, Item 4.1.1 of our Statement of Work called for the following
effort:

The contractor shall modify the current input processor from
the ability to handle programs written in the JOVIAL J3/J73 subset
defined under contract F30602-75-C-0042 to handle, in the greatest
extent possible, the complete JOVIAL (J3). The following features,
among others yet to be accommodated are the file- and table-
declarations, the 'alternative', 'exchange', and 'return’
statements, file I/0 operations, and multiple entry points on
procedures.

The input processor of our verification system comprises two Successive

stages of processing:

# Parsing and Transduction

® Verification Condition Generation (VCG)
The first is concerned only with the syntactic recognition of JOVIAL
constructs, while the VCG stage makes use of the semantic aspects of JOVIAL.
In Section 11, Subsection B, we discuss the modification of the
parser/transducer to fulfill the requirements of Item 4.1.1. Section II,
Subsection C describes the changes made to the verificaticn condition
generator tc handle the features 1listed as well a2s others. This subsection
also points out ambiguities in the JOCIT language definition [3] that were

made apparent by our efforts.
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B. Ihe Parser/Transducer

The first step was to define precisely the version of JOVIAL (J3) to be
accommodated by the input processor. Our effort was based on the JOCIT
version of JOVIAL, as documented in [3]. This document was, therefore, used

for the definition of JOCIT syntax and semantics.

In the next three subsections we discuss, in turn, construction of a
formal grammar for JOCIT, the building of a parser/transducer by means of a

parser-generator, and how to use the parser-transducer on JOCIT programs.

1.  Grammar Construction

Our previous parser/transducer used the Earley algorithm [5], and
was based on a syntactic description of a subset of J3/J73 in the form of
modified BNF syntax equations [7]. In the new version we propos: to make
use of a much more efficient parsing algorithm, effective with SLR grammars
(see [4]), to meet the requirements of Task B. A detailed discussion of
parser techniques and their speed capabilities appears in Section III of this
report. The next step was to express the syntactic constraints of JOCIT in
the form of BNF equations that would form an SLR(1) grammar. SLR(1) was

chosen for reasons of parsing efficiency.

We first rewrote the semiformal descriptions presented in [3] as
strict BNF equations, subsuming nonterminals under common forms when
necessary or convenient. The resulting formal grammar for JOCIT appears in
Appendix A. The highly readable form in which the grammar is shown there was
produced by a grammar display package due to O, Roubine of the SRI Computer
Science Laboratory staff. This package, developed under another DoD
contract, is available on file [SRI-KL J<ROUBINE>SHOWGRAMMAR.COM. We should
note that this grammar covers all of JOCIT as defined in [3] with the

following system-dependent exceptions:

#  MONITOR

* Direct JOVIAL code (including direct:assign)
#  COMPOOL

®# MODE directive

* DEFINE directive




Several passes over the grammar were required to achieve this final form

because it is usually not apparent whether a grammar is SLR(1). In fact, the
best test for the SLR(1) property is to submit the grammar to an SLR(1)
parser-generator. Three or four such design passes were required for the
JOCIT grammar; minor modifications to the grammar were made whenever
conflicts were discovered.

2. Usipg the Parser Generator

Our parser-generator has three phases: the first and third are
implemented in INTERLISP and the second in ECL. The first phase prepares,
from Lisp data structures, the input to the second phase, which is an SLR
parser system developed at Harvard by Griffiths, Shostak and Townley and
implemented in ECL [10]). The tables produced by ECL are then processed by
the final INTERLISP phase, which converts them into INTERLISP or MACLISP code
and combines the result with user specified transductions and lexical
analysis routines to produce the final parser. Here is a diagram that
describes this process:

INTERLISP Grammar File

----is transformed by Phase 1 to--===vc-e- >
ECL-Readable Grammar Files

--=-=which are transformed by Phase 2 to--->
ECL-Produced SLR Parse Tables

----which are transformed by Phase 3 to--->
INTERLISP or MACLISP Parser

Figure 1. Parser Generation

Compiled code for this parser-generator is stored in [SRI-
KL J<ROUBINE>INTERPG.COM. In addition to the grammar, the parser-generator
takes as input a description of the lexical tokens of JOCIT, from which a
finite state lexical analyzer is synthesized to build input for the parser.
The purpose of the parser/transducer is not merely to parse the subject JOCIT
program but also to output a transduced version of the program as a Lisp data
structure. This parse is the input for the second phase (VCG) of the input
processor. The data structure that contains the formal grammar also provides
transduction augments for each nonterminal of the language. These augments
are user-supplied and define the structures of transductions produced by the

parser.
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The construction of the parser begins with loading the parser-
generator into INTERLISP by calling:
_LOAD (<ROUBINE>INTERPG.COM)

Several explanatory messages are typed out at the user's terminal.
If the file (JOCIT$) containing the grammar is ready, the user proceeds
according to the instructions; if, on the other hand, there have been changes
in the grammar file since the last construction of a parser, one must invoke
the ECL program that rebuilds the grammar file by calling (from within
INTERPG.COM):
_ECLPR(JOCIT)

This action loads the file JOCIT$ (containing the grammar,
transductions, and 1lexical analyzer description) into the environment. If
the user then responds with "YES" to a query asking whether ECL should build
new tables, ECLPR will perform that action.

Before we continue our description of the user actions needed to
construct the lexical analyzer portion of the parser, we digress briefly to
make some general remarks about its design and function. The finite-state
machine that actually performs lexical analysis during parsing is itself
synthesized by the parser-generator from a data structure specifying the
lexical level of the grammar. This particular data structure, FSM, was hand-
designed by analyzing the various ways we may validly combine individual
characters to produce JOCIT lexemes, such as integers, fixed-point numbers,
floating-point numbers, JOCIT names, octal constants, character constants,
status constants, special one-character lexemes ($, I, A, S, U, P, V, R,

etc.), and special two-character lexemes (*®*,6 ($, $), (*, #) and ==).

The resulting finite-state machine specification had 48 states,
with 31 terminal states. It is shown diagrammatically in Figure 2, and
resides in the grammar file JOCIT$ as the binding of the Lisp variable FSM.




T Ty

$eparatorp

separatorp

separatorp

e e e T

; Figure 2. Finite State Machine Lexical Analyzer
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KEY: 1. SO is the initial state.

2. Boldface indicates final states.
3. Lexemes associated with final states are:

S2, S13, S25 FLOATING\CONSTANT

S5 FIXED\CONSTANT
S10 RANGE\PRFX

S14, S20, S4% LETTER

S17 OCTAL\INTEGER
S18 NAME

S19 NAMEDOT

S23 STATUS\CONSTANT
S24, S31 DECIMAL\INTEGER
s29 CHARACTER\CONSTANT
S32 $

S33 $)

S34 /

S35 /)

S36 L]

S37 ¥)

S38 (

S39 (®

sS40 (/

sSi1 (¢

su2 =

sSi3 ==

Si5 RIGHT\PAD

su6 ILLEGAL:LEXEME
su'( (1]

4. The meanings of the transition predicates are:

separatorp any separator character, i.e. space, linefeed,
carriage return, formfeed, or eol

alphap any alphabetic character

digitp any digit

alphadigitp any alphabetic character or digit

notrparenp any character other than ')’

errorp any character which is illegal as the initial

character of a JOCIT lexeme, i.e. any
character not an alphabetic, a digit, a
RIGHT\PAD (which indicates end-of-file on
parser input), a separator, or one of =, .,
G § /,0or "




The actual construction of the lexical analyzer 1is carried out
mechanically in JOCIT$ by celling the function MAKE.NEXITYPE. This action
creates a function definition for an INTERLISP function, NEXTTYPE, which is
the lexical analyzer portion of the parser. Also created at the same time by
MAKE.NEXTTYPE is a function (another part of the lexical analyzer) called
BEGINCHECK. BEGINCHECK assembles alphabetical tokens and zlso, by means of
buffering and 1look-ahead, distinguishes two uses of BEGIN in the JOCIT
grammar that are not distinguished by our SLR(1) grammar. We had to provide
this feature in order to make the grammar parseable with SLR(1) techniques.
The construction of the lexical analyzer also uses a description of the final
states of the finite state machine which is given in the variable
FINALSTATES. FINALSTATES is a list of triples, where the first member of
each triple is the state name (e.g., S17); the second member is the generic
state name (e.g., octal\integer); and the third member is the particular Lisp
function used to pack the characters together to make that kind of token.

Examples of these "packing" functions are NCONCAT, BEGINCHECK, and STATE.
In operation, the lexical analyzer works as follows:
1. A functicn PEEKBUF in the analyzer reads a character from the
file being parsed, and places it into a BUFFER.

2. Another lexical analyzer function NXTCHR reads the character
into a second buffer, called INPUTS2.

3. Characters are eventually read into a third buffer, INPUTS,
from which they are packed into accepted lexemes by one or another
of the "packing" functions named above.

The extra buffers are needed because the lexical analyzer is azlways trying to
recognize as a legal token the 1longest possible string of consecutive
characters. 1If, for example, the string ABCDE is being read, where ABC, and
ABCD both determine legal final states but ABCDE is illegal, then eventually
ABCD finds its way intc INPUTS but E remeins in INPUTSZ to be placed back in

the BUFFER before recognition of the next lexeme.

The parser-generator finishes by writing @ file containing the
synthesized perser. The user may choose to create either an INTERLISP or a
MACLISP parser. We wanted to construct a MACLISP parser so that our whole

system would be able to run in the MACLISP environment availeble on the RADC~

!




MULTICS computer. The file containing our parser/transducer is called
JMAC.MAC, and it is directly loadable into any MACLISP environment.

The principal function of our parser is called JMAC. Its wuse is

described in the next subsection.

3. Use of the Parser/Transducer

In order tc use a parser/transducer synthesized by the above
parser-generator, one must first have available a text file containing a
JOCIT program to be parsed. Suppose that such a JOCIT program is on a file
called "testprog.joc". One first loads the synthesized parser on top of a
MACLISP environment (containing our function library) by typing '(bload jmac

mac)'. At MULTICS the corresponding command is '(load "jmac.mac")'.

The user should follow the steps shown below. First, initialize

the parser by calling:

(jmacinitialize)
Next, apply the parser/transducer to the selected file (taking care to save
the result on a Lisp variable, say "parse"), by typing:

(setq parse (Jjmac '(testprog joc) 0))
When parsing 1is completed, the transduced program is typed out at the
terminal. The wuser will'usually wish to save the result of parsing on a
Maclisp~-loadable file. In our system this can be done by setting, say
testvars, to '(parse), and calling (mfile test). This makes a file with the
binding of parse saved on it.

When the parser aborts because of a syntax error in the JOCIT text
file, an error message indicates the first illegal lexeme detected. The
INTERLISP parser/transducer has interactive debugging aids that assist the
user in correcting the error. (Unfortunately, the I1/0 and text editor
features of MACLISP do not permit that flexibility. However, one may obtain
the similar data by tracing the function BEGINCHECK and reexecuting the
parse.)

12




1. Introduction

The semantic description of JOCIT used by our system is embodied in
the second part of the input processor--its Verification Condition Generator
(VCG). The VCG design is based on the same document [3] as the input
transducer. The only difference is that while the syntactic description of
JOCIT in [3] is in the form of BNF syntax equations, the semantic
description is in natural language. As always with natural language
specifications, the possibility of misinterpretation cannot be dismissed.
Moreover, some aspects of JOCIT are inherently undefined, or they are
dependent on the machine implementation. Examples of such incompletely

specified aspects of JOCIT semantics are the following:

* The order of evaluation of subexpressions; see [3], p. 3-13,

* Transfer of control into a FOR statement; see [3]), p. 4-21,
and

# Evaluation of a switch that involves a function call which
reinvokes the same switch; (3], p. U4-7.

We hope that the predicate transformer specifications given below are

sufficiently unambiguous to be checked by JOCIT compiler experts.

The basic purpose of the VCG is to map a2 JOCIT program--together
with formal specifications--into a set of 1logical formulas expressing the
necessary and sufficient conditions for consistency between the program text
and the specifications. The VCG operates with predicate transformers on the
abstract version of the program tc be verified. The basic predicate
transformer is realized by a function WP (standing for "weakest
precondition") that computes the weakest liberal precondition P for each pair
(S,Q) where S is an executable JOCIT statement (or declaration) and Q is a
logical 2ssertion. P is said to be the "weakest liberal precendition fer
(S,Q)" if the truth of P before executing S implies that Q will hold after
executing S, provided S terminates. The use of liberal preconditions rether
than strong preconditions reflects the intent to prove partial correctness.

Procofs of termination are carried out independently.




The verification condition generator has at its top level a user-

invoked function, VCG, which takes as its single argument a Lisp variable
bound to the (abstract) main program text for which VCs are to be computed.
The parser/transducer will have produced the abstract program from an
annotated JOCIT program. For example, the Lisp variable might be called
MAIN. To compute VCs for MAIN, the user types in:
(VCG MAIN)

and the result of this invocation of VCG will be to bind a new Lisp variable,
MAIN®, to a computed list of VCs for MAIN. In addition, any subprograms,
procedures, functions, or closed subroutines contained within MAIN will be
identified and analyzed, and their VCs computed, as explained below. In each
case, the VCs are bound to the Lisp variable formed by appending the

character * to the name of that particular subentity.

For each control path lying between successive assertion points in
the main program, the function VCG computes a formula (VC) in predicate
calculus expressing a condition of correctness for that path. Let the
program text between successive assertions p and q be denoted by {S}. We
represent the tagged path by p{S}lq. The VC for path p{S}q is given by:

p implies WP[S; q]

VCG systematically considers the whole main program supplied to it
and delivers as its result a 1list of such VCs--one for each elementary path
between assertions. The function VCG does this by beginning with the main
program's output assertion and applying the predicate transformer WP
successively to program statements preceding that assertion until some point
with an attached assertion » is reached. At thet point, a single path VC
will have been constructed, and a free variable called "VCS" (local to VCG)
starts to accumulate such VCs. Construction of the next path VC is
initiated, with the assertion p now playing the role of the output assertion.
This process continues until all assertion points have been traversed and the
main program input assertion attained. The last path VC to be constructed
is, therefore, the VC for the initial path segment lying between the input
assertion and the first assertion point. The list of VCs accumulated on the

Lisp variable VCS 1is assigned to the external output variable MAIN®, an




appropriate message 1is printed out on the user's terminal, and VCG is

completed.

The next subsection contains brief discussions of how WP acts on
each of the types of statements that were present in the RPE/1 subset cof
JOVIAL. The subsection following that describes in detail the action of WP

for features of JOCIT that were added during the present phase. Most readers
will prefer, at least on a first reading of this report, to omit these two

highly detailed subsections and proceed to Section III.

R

2. Basic Features of the Precondition Operator WP

.

Tt 2 primitive statement types handled by WP in the RPE/1 system

were:

S 7 e T
-

assignment (to simple variables)
* assignment (to arrays)
* simple conditional statement
%  compound statement
* iterative statement (a2 do-while type of statement from J73)
We shall need to refer both to JOCIT statements and their transduced
(abstract) counterparts. To make this correspondence obvious, we introduce
the metalinguistic convention that form' shall stand for the transduction of -
the JOCIT expression (statement, declaration, or other expression)

represented by form.

For each of the these five statement types, we exhibit below the

following information:

*  The JOCIT syntax for s (q.v. Appendix A)
* The abstract syntax s'
* The definition of WP[s;q]

(a) Let simple:asst be the JOCIT statement:
lhs = rhs §

| ' [In abstract syntax: simple:asst' = (:= lhs' rhs')]
f WP(simple:asst';q'] = the result of substituting rhs'

for each (free) occurrence of lhs'
in q'.

15




(b) Let array:asst be the JOCIT acsignment to a component of an

G

array (possibly multi-dimensional):

array:ref = rhs $
[In abstract syntax:
array:asst' = (:= (name' index-1ist) rhs')

where index-1list

(SUBSCRIPTS . <a-list-of-indices>)]
Then WP[array:asst'; q'] =

WP((:= name' (CHANGE name' index-list rhs')); q']
Thus WP for array assignments is handled by applying WP for simple-variable
2 assignments to a virtual simple variable having as its name the array name.

5 This feature appeared in much the same form in the RPE/1 system.

(c) Let cond:stat be the JOCIT st:tement:
IF bcol $ stat

(In abstract syntax: cond:stat' = (IF bool' stat')]
WP[cond:stat'; q'] =

(AND (IMPLIES bool' (WP stat' q'))
(IMPLIES (NOT bool') q'))

This is identical to the corresponding feature in RPE/1.

(d) Let compd:stat be the JOCIT statement:
BEGIN statl stat2 ... statn END

[Note: ecach stati contains its own $ terminator)

[In abstract syntax:

compd:stat' = (BEGIN stat1' stat2' .. . statn')]
The semantics are given recursively by:

WP(compd:stat';q'] =
WP{stat1'; WP[(BEGIN stat2' stut3' ...) ; q']]

(e) Next, we describe the iteration statement. We have augmented
the JOCIT language here by adding an assertion. This assertion 1is
syntactically optional but required for verification. The JOCIT syntax is:

FOR i = a, b, ¢ {ASSERT bool} $§ stat

16
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and the corresponding abstract form is:
(FOR i ((ASSERT bool') (a' b' c')) stat').

If the optional assertion is omitted the transducer supplies a vacuous

assertion clause, (ASSERT T). Here i stands for any single-character control
index, and a, b, c represent any numeric (integer-type) expressions. This
syntax differs from that of the iterative statement type in RPE/1--a while-
do/do-until form derived from J73. See [7] for details of VCG for the RPE/1
iterative statement. We discuss here only the features that had to be added
to the RPE/2 VCG to handle the JOCIT iterative statement.

The semantics of the JOCIT complete-for-statement shown above is
defined to VCG by post-transduction processing of the iterative statement
into an explicit loop iterative:stat®.

WP[iterative:stat'; q] = WP[iterative:stat®*; q]
where iterative:stat® is the compound statement:

(BEGIN (:= i¥* a*) (LABEL g*) (ASSERT bool#*)
stat®
(:= i® (PLUS i% p%*))
(IF (LTQ i* c*) (GOTO g* NIL)))

The system generates the unique name i* for the local control variable i
within the loop. Similarly, g* is a system-generated name for the loop
return point. The terms bool*, stat*, a* b#* and c¥ refer to the transduced
loop invariant assertion, loop body, initial value, increment, and final
value expressions, respectively, after they have had all occurrences of i
replaced by i®*. Observe that the order of the events: initialization,
execution of the body, incrementing, and branching, follow the sequence shown
in (3], p. U4-14,

The translation as actually implemented in VCG is somewhat more
complex than indicated above. For one thing, "downward" incrementing (i.e.,
where b<0) implies a different exit test in the IF-clause of the translation,
viz., (GTQ i* c%). The implementation tests b and if it is 1literally a
number, chooses the appropriate inequality operator. If b is not a number
(i.e., it is a numeric expression with a run-time value) the VCG
implementation generates a conditional expression to cover both

possibilities, b>=0 and b<0. Moreover, JOCIT also provides for degenerate

17




cases

above,

translated to compound statements though we do not show their forms in ?
detail.
specified) is transduced into a form equivalent to the complete (3-factor)
with ¢ taking the symbolic value INFINITY. The VCG implementation

case,

checks for c=INFINITY and if so, suppresses the exit inequality that would
otherwise appear in the post-transduction form. The trivial case of a 1-

factor FOR-statement uses an obvious, separate translation to straight-line ,

code.

loop path when it encounters the 1loop asserticn, passing back the loop
assertion bool* as the value to be returned by WP.

This concludes our discussion of WP for the statement types handled by the
RPE/1 VCG subsystem.

3.

called

of the iterative statement (complete, 3-factor FOR-statement) shown

In the 2-factor and 3-factor cases, VCG makes a separate VC for the

viz, the incomplete 2-factor and 1-factor cases. These are also

The incomplete 2-factor FOR-statement (where no exit value, ¢, is

Features Added to VCG ip RPE/2.
The new features are:

alternative-statement (ifeith/orif-statement)®#

goto's (to labels, item:switches and index:switches)

return statement¥*#*

optional entry point to a main program#*¥

exchange statement¥*#

assignments to functional modifier variables

data declarations (simple items, arrays, tables and files)#*#®
file 1/0 operations#*#

processing declarations (switch declarations, procedures,
functions and closes)

procedure call statement

Items in the above 1list marked with terminal ** were specifically

for in the Statement of Work.




We now define WP for each of the above types just as was done in
the preceding subsection.

(a) Let alt:stat be the JOCIT form:

IFEITH bool $ stat ORIF booll $ stat!
ORIF bool2 $ stat?2

LIS

END
After transduction this assumes the abstract form, alt:stat':

(IFEITH (bool' stat')
(bool1!' stat1')
(bool2' stat2') ... )

Then
WP[alt:stat'; q'] =
(AND (IMPLIES bool' (WP stat' q))
(IMPLIES (NOT bool')
(AND (IMPLIES booll' (WP statl1' q))
(IMPLIES (NOT bool1l')
(AND' cvie wws JY wse)
(b) Let goto:stat be either of the JOCIT forms:
GOTO name $
[abstract form: (GOTO name NIL)]
GOTO switch:expr $
[abstract form: (GOTO sw:name indices)]
where name is a statement:name and switch:expr is an indexed expression
(e.g., XSW($1$) for an index switch). These forms are handled by VCG at a
higher level than WP (as are the related RETURN statement and the optional

entry to a main program, both of which are discussed below). The following

technique is used:

A preprocess phase of VCG scans the program for labels and switch
statements. We insist that each label be followed by an assertion because in
principle any such point may be targeted by a goto. The preprocessor
replaces the goto:stat by the assertion appearing at the targeted point. If
the goto target is a label (statement:name followed by a dot), the
corresponding (ASSERT bool') statement replaces the goto, except that the
form used is (ASSERT bool' STOP), where STOP is a flag to the VCG that this
point is not to be used for initiating construction of a new path VC. It

merely terminates the current path VC. The actual assertion (ASSERT bool')
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following the targeted label will, of course, initiate a new path. For gotos
addressing a switch (index:switch or item:switch) a similar device is
employed, except that the preprocessor pursues the chain of gotos implied by
a succession of switches to an ultimate target label. At each step, an
appropriate conditional expression 1is constructed, involvirg the possible
equality of either the item:switch variable to the values in the item:switch
list, or the index:switch variable to 0,1,2,... . Note that it 1is thereby
forbidden to have a switch statement readdress itself, either directly or
entirely through a chain of other switches. Although this is probably a

restriction on JOCIT practice, we do not believe the restriction to be

serious.

(c) RETURN statement

The JOCIT form:
RETURN $

(abstract form: (RETURN)]

may be part of the body of a procedure, function, or close declaration.
Execution of the RETURN implies that control will be passed to the exit
functions for these entities. Therefore, the same effect is generated in VCG
if the form (RETURN) is replaced at each occurrence by an assertion (ASSERT
exit-assertion' STOP) much as with the gotos discussed above. The exit-
assertion 1is, of course, derived from the specification attached to the

procedure, function, or close in which the return is embedded.
(d) Optional entry to a main program

The syntax for main:program provides for an optional name appearing
immediately preceding the final $ terminator. The semantics given in (3],
p. U4-7 state that:

Execution of a program begins with the first statement in the
program unless a main program has specified a statement name
following the TERM bracket. In this case, program execution begins
with the statement bearing the specified label. Of course, this
label must be accessible, i.e., it must not be declared within a
procedure, function, or close declaration within the main program.
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The same semantic effect can be provided to the VCG by simply inserting a
goto statement targeting this statement 1label at the head of the executable
code. The VCG preprocessor provides this translation by executing a function
TRANS:RETURN on the body before it begins generating VCs.

This feature was implemented in VCG to fulfill the requirement in
Task A referring to "multiple entry points on procedures," since, in fact,
multiple entry procedures are not part of JOCIT. The optional entry point to

main programs is, however, an analogous feature.
(e) Exchange statement

Let exch:stat be the JOCIT statement:
varl == var2 $
The abstract form is (EXCHANGE vari1' var2'), and the semantics are defined
(see [3], p. 4-4) by the sequence of statements:

templ = varl $
varl = var2 $
var2 = templ $

for the case of exchange of simple variables (for subscripted variables,
additional complications may arise from the evaluation order of indices).
Accordingly,
WP(exch:stat';q') = WP[(BEGIN (:= templ varil')
(:= var1' var2')
(:= var2' templ)); q']

In the implementation of this definition, the variable denoted by
templ is actually a unique system-generated name (gensym) to prevent the
occurrence of name conflicts with any other variables that may be present in
the program or its assertions.

(f) Assignments to functional modifier variables

The JOCIT functional modifiers ODD, CHAR, MANT, and POS have been
handled specially in VCG to permit WP to process assignment statements where

forms such as ODD(XX) appear on the lhs of assignments.

ODD: ODD(XX) refers to the least significant bit of the binary word
stored in XX. When ODD(XX) appears on the left side of an assignment, e.g.,
ODD(XX)=VV $ , the effect is to set this least significant bit to (the least
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significant bit of) VV. These semantics are captured by defining WP[(:= (ODD
XX) VV); Q] as:

WP[(:= XX (SUBTRACT (PLUS XX (ODD VV)) (ODD XX)); Q']
where Q' is the result of substituting VV for each occurrence of (ODD XX) in
Q. (The point is to define the semantics in terms of an assignment with a

simple identifier on the left-hand-side.)

CHAR: CHAR(FF) refers to the characteristic of the (floating point)
number FF. Thus, an assignment to CHAR(FF) (e.g., CHAR(FF)=CC $) changes the
characteristic to CC, leaving the mantissa MANT(FF) unchanged. For any
floating point number FF:

FF = MANT (FF)#2*#CHAR (FF)
Hence, the above assignment makes FF = MANT(FF)¥2#%CC, These semantics are
captured by defining WP[(:= (CHAR FF) CC); Q] as:
WP[(:= FF (TIMES (MANT FF) (EXPT 2 CC))); Q']
where Q' is the result of substituting CC for each occurrence of (CHAR FF) in
Q.

MANT: MANT(FF) is analogous to CHAR(FF). Thus, the assignment
MANT (FF)=MM makes FF = MM¥2%#CHAR(FF) and WP[(:= (MANT FF) MM); Q] is defined
by:
[(:= FF (TIMES MM (EXPT 2 (CHAR FF)))); Q']
where Q' is the result of substituting MM for each occurrence of (MANT FF) in
Q.

POS: POS(FI) refers to the file position pointer of a file object,
FI. Thus, POS(FI) is UNDEFINED if the file is not open; it is the integer 0
if the file FI has just been opened; and is otherwise a positive integer.
Assignments to POS(FI) move the file pointer. Our VCG defines an internal
variable, FI:FILEPTR, for each declared file FI. This internal variable is
an alias for (POS FI1). That is, assignments to (POS FI), whether they result
from explicit assignment statements, or from POS(FI) being an actual output
parameter of a procedure or function, or from POS(F1) being a parameter in an
input list of an INPUT statement, also result in the same virtual assignments

to the variable FI:FILEPTR. (File 1/0 operations are discussed below.)
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Thus, WP[(:

WP((:

where Q' = the result of substituting PP for each occurrence of (POS F1) in
Q.

(POS FI) PP); Q] can be defined as:
FI:FILEPTR PP); Q']

Assignments to the other types of JOCIT functional modifiers, viz,
BIT, BYTE, NENT, ENTKY, and ENT are not presently accommodated by the VCG.
Attempts to use them on the lhs of assignments will produce an error message
from VCG.

(g) Data declarations

We consider separately these various types of data declarations
provided in JOCIT:

*# simple item declarations
#* array declarations
# table declarations

# file declarations
(g.1) Simple item declarations

Simple items comprise numeric (integer, fixed- and floating-point
numbers), Boolean, character-constant, and status-constant items. In each
case, the JOCIT syntax is mapped into an abstract form beginning with the key
word ITEM, and other portions of the transduced declaration will identify it
as an item of type: I (integer), A (integer or fixed-point item, depending on
the presence or absence of an integer declaring the number of fractional bits
used in the representation), F (floating), B (Boolean), H/T/C (character-

constant of type Hollerith, Transmission, or ASCII), or S (status-constant).

This information can be useful in verification: the deductive
system may need to know the type of a variable to justify its wuse in
particular contexts. In each case, the action of the subfunction of WP that
handles item declarations is to assert a post-transduction logical version of
the information contained in the declaration. This effect can be obtained by
making WP[item:decl; q] return the expression:

(IMPLIES item:decl®* q)

where item:decl®* is the post-transduction forrrangitem:decl'. In practice we
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have arranged to collect the post-transduction forms, item:decl®, in one
large conjunction with the input assertion for the main program (or other

such program unit, e.g., subprogram, procedure, etc.).

These post-transduction versions, item:decl®*, vary from one type of
item to another. We have attempted to anticipate what types of information
will actually be wuseful in verification and to carry over such information

into the post-transduction forms. For example, a declaration (for an

unsigned integer II):
ITEM I1II I 20 U $
becomes, after transduction and post-transduction transformation:
item:decl® = (AND (INT II) (GTQ II 0))

In the present system, we have not attempted to use detailed number
representation data; hence, the information "20 bits per item" is not carried

over. In a later version of our system, where the semantics of machine

representation may become significant, we will modify these forms. Presets
to values are currently handled, however. Thus, the signed integer
declaration:
ITEM JJ I 15 S P 1000 §
which provides for initialization of JJ to the value 1000, maps over into:
item:decl® = (AND (INT JJ) (EQ JJ 1000)).

Note that the clause (GTQ JJ 0) is absent because JJ was declared signed.

Floating item and fixed item declarations are mapped into logical
forms like (REAL FF). We are not attempting to distinguish between fixed and
floating-point items, both types are treated as real numbers in the deductive

system. Presets are handled just as they are for integer items.

Boolean items are mapped into forms such as:
(AND (BOOLEAN BB) (EQ BB 0))
or simply,
(BOOLEAN BB)
if the preset is absent. The deductive system can be informed (by means of
an axiom) that (BOOLEAN BB) is equivalent to (OR (EQ BB 0) (EQ BB 1)) in

confermity with JOCIT semantics.
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The treatment of other types of items is similar, with Hollerith,

Transmission, and ASCII items all mapped without distinction into (CHARACTER-
CONST item:name).

(g.2) Array declarations

Since these are more complex than simple item declarations we have
attempted to carry more information over into the post-transduction form.
For example, the JOCIT declaration:

ARRAY AA 2 31 15S §$ (See [3], p. 5-7)
becomes in post-transduction form:

(AND (IS-ARRAY AA) (EQ (DIMENSION AA) 2)
(EQ (UPPERBOUND 1 AA) 2)
(EQ (UPPERBOUND 2 AA) 3))

since AA is here a two-dimensional array with two elements along the first
("column") dimension, and three elements along the second (or "row")
imension The verifier does not currently perform array bound checks, but
it will be relatively simple to make use of this bound information in future

extensions.

Array declarations need to invoke another VCG mechanism, however,
because of name scoping (see [3], p. 8-3). We have arranged that, upon
entering the name scope (e.g., a procedure or function declaration) within
which an array (or table, file, or switch) is declared, the array information
given above 1is also stored on the property list of the array name. This
information is available locally, i.e., while VCG is acting within that name
scope, and the information 1is destroyed upon exiting that scope. A list
(ARRAYNAMES) is also maintained (and updated) which collects the names of
currently declared errays. The global variables, SWITCHNAMES, TABLENAMES,
FILENAMES, and PROCNAMES play similar roles. Thus, the action of WP on an
array (table, file, or switch) declarations also has a side effect within VCG
with respect to this property list storage mechanism, in addition to the

value that WP passes back.
(g.3) Table declarations

In most respects table declarations are handled in a manner similar

to array declarations. However, the post-transduction logical form,
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table:decl®, has been kept to the minimum information (IS-TABLE table:name).
The side-effect of WP[table:decl'; q)] is, as with array declarations, the
creation of property list information relevant to the declared table. This
includes the following:

dndicator Property

TABLESIZE table:size'

TABLESTRUCTURE P/S
TABLEPACKING N/M/D

where table:size' is (V number) or (R number), for "variable" or "rigid"
sizes, respectively. TABLESTRUCTURE refers to P (parallel) or S (serial).
TABLEPACKING distinguishes the three types: N (no packing, i.e., word units),
M (medium packing, i.e., byte units), and D (dense packing in bit units).
While the verifier does not currently make use of such machine represention
information, we expect to do so in future improved versions. Provision for

preset information was not included in this version.
(g.4) File declarations

File declarations are analogous to array and table declarations in
the mechanisms used in VCG. The JOCIT file declaration:
FILE FI [C/H/B] n1 [V/R] n2 file:states device:name $
(where [C/H/B] = file:type, and [V/R] = length:type) becomes in transduction:

(FILE FI file:type' n1 length:type' n2
file:states' device:name)

where nl1 = file:size = the maximum number of records in the file, and n2 =
record:size = either the maximum record size (for V-specificiation) or the
fixed record size (for R-specification). Record size is given in bytes for H
and C-type files, and in words for B (binary) files. The file:type' is
defined as:

® ASCII, if file:type = C;
® HOLLERITH, if file:type = H;
® BINARY, if file:type = B.

The item file:states' = a list of the items in the supplied list of
status constants, file:states, e.g., ((V SHUT) (V. OPEN'INPUT) (V
OPEN'OUTPUT)), if file:states happens to be V(SHUT) V(OPEN'INPUT)
V(OPEN'OUTPUT).
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The information stored (temporarily, i.e., within the name scope of

the file declaration) on the property list of the filename, FI, is:

Indicator Property

FILETYPE ASCII/HOLLERITH/BINARY
FILESIZE nl (an integer)
LENGTHTYPE V/R

RECORDSIZE n2 (an integer)
FILESTATES file:states!

DEVICENAME device:name (e.g., DSK)

(h) File I/0 statements

The file I/0 statements comprise the INPUT, OUTPUT, OPEN, and SHUT

statements. The transduced syntax for these forms is:

inp:stat' = (INPUT file:name v1 v2 . . .)
out :stat' = (OUTPUT file:name el €2 . . .)
ostat' = (OPEN INPUT/OUTPUT file:name . optional-iolist)

shut:stat'= (SHUT INPUT/OUTPUT file:name . optional-iclist)

The elementary operations here are opening and shutting a file
(with no iolist provided), and the INPUT and OUTPUT statements, inp:stat' and
out:stat'. The semantics of the OPEN and SHUT statements with an iolist
provided are defined by concatenation of a simple CPEN/SHUT statement with
the corresponding INPUT/OUTPUT statement. In the case of OPEN, the file is
opened and then the INPUT/CUTPUT is executed; in the case of SHUT, the

concatenation is in reverse order--the INPUT/OUTPUT statement is followed by
the simple SHUT.

Thus, we need only define WP for the simple OPEN/SHUT forms and the
INPUT/OUTPUT forms. WP[(OPEN/SHUT INPUT/OUTPUT file:name); ql] is defined by:

WP[ (BEGIN (:= (MAKE:FILESTATE file:name)
(OPEN/SHUT INPUT/QUTPUT))
(:= (POS file:name) Q)
(:= (MAKE:FILEPTR file:name) 0))
i ql

lhe definition of WP[(INPUT file:name item); ql, i.e., the form for
input of 2 single item, is:

WP[ (BEGIN (:

item (READ-RECORD file:name
(POS file:name)))

(:= (POS file:name) (PLUS 1 (POS file:name))))

i ql
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Analogously, WP[(OUTPUT file:name item); q] is given by:

WP[(BEGIN (:= file:name
(WRITE-RECORD file:name
(POS file:name) item))
(:= (POS file:name) (PLUS 1 (POS file:name))))

i ql

WP for INPUT/OUTPUT statements with an iolist consisting of several
items is defined in the obvious way by recursion on the length of this list.
Thus, updating of the file position pointer, e.g., FF:FILEPTR = (POS FF), is
handled by an explicit assignment to (POS FF) each time a record is read

from, or written onto, the file FF.

Tne functions MAKE:FILEPTR and MAKE:FILESTATE used above are such
B that (MAKE:FILEPTR FF) returns FF:FILEPTR, and (MAKE:FILESTATE FF) returns
FF:FILESTATE, where FF can be any JOCIT name. As mentioned earlier,
FF:FILEPTR is equivalent to (POS FF); the VCs contain the information that
they are the same quantity (integer, or UNDEFINED).

The forms (READ-RECORD file:name ptr) and (WRITE-RECORD file:name
ptr item) are analogous to SELECT and CHANGE as used in the semantics of

arrays described above.
(i) Processing declarations

Processing declarations comprise switch declarations, procedure
declarations, function declarations, and close declarations. The 1last three
are similar and will be discussed together. There are two somewhat different
types of switch declaraticns, index switches and item switches, and they are

discussed separately.
(i.1) Index switch declarations

Index switches are declared by:
SWITCH sw:name = ( forml, form2, ... , formn) $
where the forms are either empty or goto:formulas of the type:

goto:formula name

i:= item:switch:name
= switch:name($ index $)
The transduced syntax for an index switch is:

(INDEXSWITCH sw:name forml1' form2' ... formn')
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where an empty form transduces to NIL, a name transduces te (name NIL), and
an indexed formula, e.g., ISW1($1,2%), transduces to the abstract form (ISW1
(1 2)). For example, the index switch declaration:

SWITCH XSW1 = (LO, L1,, CLS, XSW2($2$), ISW1($1$)) $
is mapped into:

(INDEXSWITCH XSW1 (LO NIL) (L1 NIL) NIL (CLS NIL)

(Xsw2 (2)) (ISW1 (1)))
The semantics are like those of a computed goto; when the statement

GOTO XSW1($0%) ¢ is encountered (within the scope of the above declaration)
the effect 1is that of GOTO LO $, since the zeroth element of XSW1 is the
target label LO (presumably a statement name). Similarly, GOTO XSW1($1$) §
means GOTO L1 $; since the second element of XSW1 is empty, GOTO XSW1($z¢) &

has no effect. (Note that NIL is the no-op statement in abstract syntax).

As far as the index switch declaration itself is concerned, WP
merely stores the index switch list, i.e., the Lisp alist:

€0 - (Lo NEEJ) (1 . CLi NEL)) (@ o NEL) (3 . (CLS NIL}j
(4 . (Xsw2 (2)) (5 . (IsSW1 (1))))

on the property list of the switch:name (in this case, XSW1). The property
indicator used is INDEXSWLIST. This information assocciates each integer
pesition 0,...,5 with its corresponding target element. The name XSW1 :ics
alsc placed on 2 global list, SWITCHNAMES. Both pieces of informaticn are
used in the VCG processing of GOTOs.

(i.2) Item switch declaratisons

Declarastions of item switches are transduced into forms like:

(ITEMSWITCH ISW1 SWITEM (= 1 (L1 NIL)) (= ~5 (CLS NIL)))

wnere 1ISW1 is the cowitch:name, SWITEM is the variable (switch:variable)

evaluated when o GOTO ISW1 § is encountered, and the 1list of 1lists (each

beginning with =) indicates how the actual target of the goto is interpreted
for each of a finite number of values of SWITEM. Thus, if SWITEM = 1 whet
GOTO 1SW! § is encountered, the interpretation is GOTO L1 §; if SWiTEM = =5,
the meaning is GUTO CLS §. This interprotation is conducted while processing
the GOTO statement, as deceribed earlier. All that is needed in procescing
the 1item cwitch declaration is to store the name of the switchivariable
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(e.g., SWITEM) and the switch comparison 1list under the properties
ITEMSWVARIABLE and ITEMSWLIST, respectively, on the property 1list of tne
switch name (ISW1). This property list information is 1local to the name

scope of the item switch and is deleted when VCG exits from that scope.
(i.3) Procedure, function, and cleose declarations

The actions of VCG on these three types of declarations are closely
parallel (except for minor differences produced by the absence of an output
parameter list for functions and closes). We confine our description to the
case of procedure declarations. As in the case of switch declarations, the
important action is the placement of relevant information extracted from the

transduced declaration on the property list of the procedure:name.

A transduced procedure declaration has the form:

(PROC proc:name (input:list (OUT:PARS output:list))
declarations:1list
(BEGIN statl stat2 ...))

where proc:name is the name of the procedure; the car of the second element
is a8 list of the formal input parameters, e.g., a list like (XX YY); the cadr
of the second element is a list like (OUT:PARS ZZ WW), which uses OUT:PARS as
a (reserved) keyword; declarations:list contains the formal entry- and exit-
assertions for the procedure; and the last element of (PROC ...) is the

procedure body (a compound:statement).

The information stored (on the property 1list of proc:name) is as

follows:

Indicater Property
FORMAL-INPUT-PARAMETERS input:list
FORMAL-OUT PUT-PARAMETEKS output:list
FORMAL-ENTRY-ASSERTION input:assertion
FORMAL-EXIT-ASSERTION output:assertion

These actions are performed by a function called PROCESS:PROCDECL1
(which is called from PROCESS:PROCDECLS when VCG is 1looking at the whole
program or at a procedure, close, or subprogram within which the current
procedure is declared). (Note: There is a minor difference with respect to
the FORMAL-EXIT-ASSERTION property for function declarations in that the

implicit output variable for a function is the function name; hence, this
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internal name is replaced by the function name cons'ed ontoc the input:list,
e.g., FOO [a function name] 1is replaced by (FOO XX YY) everywnere in the
output :assertion) to get the FORMAL-EXIT-ASSERTION for functicns.)

The information stored in this property list persists only while
VCG is acting within the declaration scope, and it is used by the WP function

; for procedure:calls, WP:CALL, discussed below.

Invocation of WP on a procedure (function, subprogram, or close)

declaration also invokes the following hierarchical series of events:

5
. 1. The user is informed that a subprocedure has been encountered,
and he is asked whether he desires the VCs for this subprocedure
. computed now.
4 2% EE the user assents, the whele procedure (function,
L subprogram, or close) is passed for analysis to the appropriate
= version of VCG. (It is called VCGL:PROC for procedures and

functions; observe that the function VCG is for user invocation,
and on main programs only.) The body of the procedure is then
subjected to the same kind of analysis described for the main
program, and only when its VCs have been calculated, does the
system return to generating VCs for the main program. The VCs for
the subprocedure will be bound as value to a system~-generated name,
(e.g., PROC1%¥, if the procedure is called PROC1), and PROC1 will
also receive a value as a Lisp variable equal to the (abstract)
declaration.

3. If the user does not assent, analysis of the body of PROC1
will be deferred, as will analysis of any subprocedures that PROC1
might contain. However, the user can pick up this process at s
later time, since PROC1 (as a Lisp variable) will receive the
apprepriate binding to the declaration. In the interim, the VCs
for the top-level program will exist in a form that assumes the
consistency of PROC1 with its formal entry/exit specifications, and
any calls made to PROC1 will make use of that information.

The above sequence of events 1is closely bound up with cur mechanism fer

carrying out hierarchical proofs, as described in more detail in Section IV.
(j) Procedure call statement

The JOCIT procedure call statement is distinguished in the abstract
syntax by the key word CALL:

(CALL proc:name
(actual:input:list (OUT:PARS actual:output:list)))

Function calls differ only in that (1) the output:list is empty and (2)
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function calls do not appear at the statement level, but only withino
expressions. They are, therefore, more properly referred to as "function

references," although the JOCIT manual [3] uses both terms.

The action of VCG (through WP:CALL) on procedure calls 1is fairly
complex. It 1is best described by a dummy example. Suppose We are in a
program where a procedure, named PROC1, has been declared. Suppose, also,
that PROC1 has formal input parameters XX and YY, one output parameter ZZ, an
entry assertion IN:PROC1(XX, YY), and an exit assertion OUT:PROC1(XX, YY,
ZZ). The analysis of the body of PROC1 will have generated some set of VCs,
which, when they have been proved valid, substantiate the following
quantified formula:

(FORALL XX (FORALL YY (FORSOME ZZ
(IMPLIES (IN:PROC1 XX YY) (OUT:PROC1 XX YY 2Z))).

Suppose that a call to PROC1 is encountered by WP, e.g., the call:
proc:call' = (CALL PROC1 ((AA BB) (QUT:PARS CC)))
where AA, BB and CC are, respectively, the actual values correspconding to the
formals XX, YY and ZZ. The above quantified formula will be instantiated by
the actual parameter values, with a system-generated unique name, e.g.,
CC:0013, for the value of the actual output parameter after symbolic
execution of the procedure. The current assertion q being passed back
through the procedure call statement may contain references to the exit value
of the actual output parameter. (In fact, it almost certainly will contain
such references since the effects of calling PKOC1 are on this parameter.)
The WP action will, first, substitute a gensym, e.g., CC:0013, for all
occurrences of CC in q, resulting in a formula q'. This q' is then used to
construct the formula:
q'' = (AND (IN:PROC1 AA BB)
(IMPLIES (OUT:PROC1 AA BB CC:0013) q'))

The formula q'' 1is returned as the value of WP[proc:call'; qJ.
Since any instances of CC appearing in q have been replaced by instances of
the gensym CC:0013, any occurrences of CC in this formula can only have
resulted from appearances of CC in the input assertion. The gensym-ing of CC
to CC:0013 permits us to refer to both entry and exit values of the actual

output parameter.




Let us analyze what q'' means in terms of the overall VC under

generation. The current VC will embody q'' in the form:
(IMPLIES p WP[code; q''])

where "code" refers to the code intervening between some earlier centrol
point (where the assertion p is attached) and the procedure call statement.
In proving the above VC, it is incumbent on the prover (be he human or
machine) to show that q'' will be true whenever control reaches the procedure
call from the point p. In particular, proving this implication necessitates
showing that (IN:PROC1 AA BB) will hold, i.e., that the procedure's input
assertion is satisfied by the actual input values. It also requires proving
that q' will follow from the conjunction of p and the asserticn (OUT:PROC1 AA
BB CC:0013). The latter is equivalent to showing that the desired relation
q' holds among these variables, assuming that the procedure call establishes

the specified relation (OUTPROC1) among AA, BB, and CC on exit.

This process effectively permits us to decouple the process of
proving correctness for .~ formal procedure from the program (or subprogram,
other procedure, function, or close) where it is invoked. The formal
relation between entry- and exit-assertions for the procedure is instantiated
in the VC for the host program (subprogram, etc.) by the actual parameters,
and these instantiated specifications can be used to prove correctness for

the host program.
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1 VERIFICATION TIMING

A.  lptroduction

Task B, Item 4.1.2, of our Statement of Work, requires the reduction of
processing time for J3 program verification by a factor of at least 2
compared to the RPE/1 system, despite the greater scope of the KPE/2
verifier. The most obvious way of measuring a change, using the RPE/2 system
to verify a program that took a known amount of time with RPE/1 and comparing
the times required, is not feasible because the programs with which we dealt
in RPE/1 were not valid JOCIT and consequently not valid as input to RPE/Z2.
This prevents direct time comparisons for both parsing and verification
condition generation but permits them for deduction because the classes of
syntactically well-formed formulas accepted by the two deductive sysrems are
substantially the same. For parsing, a reasonable comparison can be made
between the two systems by measuring parsing 1in units of time per input
lexical token. Similarly, we can compare the times to generate verification

conditions for comparably sized programs.

We have made 2 set of such comparisons and conclude that the improvement
in RPE/2 1is substantially better than the requirement in the Statement of
Work. A binary search program on which we reported in the RPE/1 Final Report
required 210 seconds for parsing, 5 seconds for verification condition
generation, and 600 seconds for deduction. In the RPE/2 system, comparable
speeds are .7 seconds for parsing, 1 second for verification condition
generation, and 27.5 seconds for deduction. The totals are 815 seconds in
RPE/1 and 29.2 seconds in RPE/2 or a speedup by a factor of about 27.
(However, it must be noted that the RPE/2 times are on a DEC KL-20 computer
that is 3 to 5 times faster thean the DEC KA-10 on which the RPE/1
measurements were made. Also, the present system is written in MACLISP which
provides compiled object code that, in our application, appears to be

approximately 1.5 times faster than RPE/1's INTERLISP. Both these conversion

.




factors are affected by variables whose measurement 1is outside our scope,
such as the different ways the two 1lisp systems implement file input

primitives; hence comparison is necessarily quite imprecise.)

Taking into account the change 1in implementation language and machine
between RPE/1 and RPE/2, we conclude that the speed of verification condition
generation is essentially unchanged although the language being verified is
about 10 times larger in RPE/2. Especially since VCG is a negligible part of

the time for verification, we are quite pleased with this result.

Although the comparisons presented above take only cpu time into
account, we believe the time required for interaction has also been reduced
substantially. This involves only the deductive facilities of the system.
We compared the pronfs of a moderately complex verification condition for a
binary search program such as that done in RPE/1. The RPE/1 proof required
about three hours of user time. In RPE/2, as a result of both the more
powerful deductive mechanisms that have been implemented and the mcre
flexible interactive facilities of tableaux, this proof requires only about

fifteen minutes of user time.

The remaining subsections of this section describe the changes in four
parts of the system: the parser, the Presburger deductive mechanism, the

tableaux proof system, and the hashing utilities.

B. Parser ITiming

Of the verifier's various components, the parsing mechanism showed the
most dramatic speed improvement--about 30 to 1. As we noted above, part of
this improvement is due to faster computing facilities and to the use of the
MACLISP compiler. The most important reason for the speedup, however, is the
incorporation of a parsing algorithm fundamentally different from the one

used in the RPE/1 system.

The parsing mechanism used in our earlier effort is based on an
algorithm [5] developed by J. Earley. An advantage of this algorithm :is
that it assumes only that the grammar in question is context-free. This made

Earley's algorithm particularly attractive to us at the beginning of the
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RPE/1 effort, when we had had relatively 1little experience with the JOVIAL

language.

Earley's algorithm is easy to use but computationally inefficient. Our
implementation in RPE/1 was able to parse at a rate of only about one token
per second. While this level of performance was adequate for the early
stages of system development, it 1is far below that needed for practical use

of the verifier.

The parser implemented in the RPE/2 effort is based on the SLR(k)
parsing algorithm first proposed by De Remer [U4]. Unlike the Earley
algorithm, the new technique requires the context-free grammar to possess
certain structural properties. The inconvenience of modifying the grammar
into acceptable form is balanced by a dramatic increase in parsing speed. In
the case of the JOCIT parser, this speed turned out to be approximately =0

milliseconds for each lexical token.

The improvement given by the new parsing technique might be compared to
that gained by using a compiler rather than an interpreter. We feel that the

new parser is sufficiently fast for use in practice.

C. Presburger Deductive Mechanism

Much of the 1increased efficiency of the deductive compenent is due to

improvements made in the Presburger decision mechanism.

This mechanism is able to prove vélid formulas, and find counterexamples
for invalid formules in 2n extension of universal Presburger arithmetic.
Roughly speaking, universal Presburger formulas are those that can be built
up from integers, integer variables, addition, multiplication by constants,
the usual arithmetical and propositional relations, and universal closure.
The formula (FORALL x)(FORALL y)[3x+y = 2(x+y)+(x-y)], for example, is in the
class. Our extension of universal Presburger introduces arbitrary
uninterpreted function symbols. The formula

(FORALL x)(FORALL y)
((x < f(y)+1 AND f(y)< x+1] IMPLIES y+g(x) = g(f(y))+y]

is 2 member of this extended class.
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The improvements to the Presburger code made in the RPE/2 effort cen
best be explained in relation to the decision method used in the earlier

version. This method is carried out in two stages.

First, the closed formula F to be proved or disproved is transformed, by

a kind of disjunctive normal form expansion, to a set of integer linear

g

3 programming problems (ILPs). The ILPs have the property that F is valid if

and only if no ILP is solvable.

Next, the ILPs are tested (one by one) for solvability by using an

improved version of the SUP-INF method first proposed by Bledsoe [1]. If

s

B one of the ILPs is found to have an integer solution, that solution provides
d a model, and therefore a counterexample, for F. If none is found solvable, F

s is reported valid.

S £ it ey

The improved Presburger mechanism differs from the earlier version in
two important respects: both the technique used to test ILPs for solvability

and the means for handling function symbols have been changed.

As we noted above, a modification of the SUP-INF method (described in
detail in [15]) was used to test ILPs for solvability in the RPE/1 version.
The SUP-INF approach to integer linear programming may be viewed as that of
transforming an integer problem into the real domain, solving it in that
domain, and then interpreting the result in the integer domain. The 1
advantage of this approach over other methods of integer 1linear programming
is speedy solution of small problems. The efficiency of this method derives
partly from ease of use (it requires no matrix initialization as does other
methods) and partly from the fact that the real problem is easier to solve

than the integer problem. The chief disadvantage of the SUP-INF method is

incompleteness--it cannot determine feasibility for a certain class of
problems whose solvability depends on Diophantine behavior. Concerned about
maintaining completeness in the Presburger mechanism, we decided to implement
a more traditional method of solving ILPs--the Gomory [8] algorithm--in the
RPE/2 effort. The Gomory algorithm entails a substantial amount of matrix
initialization overhead, compared to the SUP-INF method, and so it 1is not
quite as efficient for small problems. On the other hand, the array

|
|
i manipulation operations used by the Gomory algorithm are handled quite
l
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efficiently by MACLISP, so the overhead 1is not substantial in our

implementation. We have found, in fact, that for medium to large problems
the Gomory implementation is as fast or faster than the Interlisp SUP-INF
implementation. Using the Gomory algorithm has significantly extended the

domain of completeness of the Presburger mechanism as a whole.

A second important improvement in the mechanism concerns the method used
to deal with the semantics of function symbols. These semantics require that
counterexamples for invalid formulas satisfy the substitutivity axiom of
equality; for example, if the variables x and y are given the same numerical
value in a counterexample, the terms f(x) and f(y) must also be given the
same value. The mechanism used to enforce this axiom in the earlier
implementation involved intricate, inefficient, and often unreliable code
interlaced with the code for the SUP-INF algorithm. In the newer version, we
use a more efficient and conceptually cleaner method. The new method is
independent of how integer feasibility is tested and is therefore more
reliable. It permits the proof of some theorems that could not be proved by

the earlier mechanism in reasonable amounts of time.

D.  Tableaux System Timing

The deductive system has been substantially improved over that of RPE/1
by the fact that we now use the Tableaux Mechanism to manage all proofs.
This facility acts as the sole user interface and is responsible for
transmitting user directives to various specialized deductive mechanisms. By
comparison, our RPE/1 deductive system had an ad hoc mechanism for
interaction and lacked the present system's capacity to structure proofs and

manage proof strategy. This new facility is described in Section 1V.




E. Hash Iiming

In areas of the system requiring the use of hash tables, we have adopted
Balbine's double hashing algorithm [11] using twin prime table sizes so that
division by the table size and the table size minus two can be used tc

compute hash probes. This greatly reduces the secondary clustering that

limited the speed of our original single hashing scheme.




IV INTERACTION

A.  Introduction

Task C, Item 4.1.3 of our Statement of Work, requires the addition to
the RPE/1 verification system of features to increase the ease of
interaction. We have implemented each of the specific features required--the
ability to save partial proofs, the capacity to extend the assertion language
with user-defined constructs, and the capability of carrying out structured
proofs of programs--as well as a large number of other facilities intended to
reduce the quantity and improve the quality of user interaction during

verification.

The two remaining subsections of this section describe the interactive
features of the tableaux proof system and the user facilities for carrying

out hierarchical proofs.

B. Tableaux Deductive System

Most of these facilities have been implemented within the framewcrk of
our Tableaux Deductive System. and so we begin by describing the ideas
underlying this system. It is based on the "analytic tableaux" of Smullyen

[16]. In this method, we prove a formula F by constructing a2 tree T such
that:

* the nodes of T are formulas,
& the root formula of T is F,

® each of the nodes of T is derived from some ancestor node
according to one cf the rules (enumerated below) for extending a
tableau, and

® each of the branches of T is "closed" in the sense that it
contains a pair of formulas P and (NOT P).

To understand why this technique works, consider the formula f(T) which is

constructed from a tree T by conjoining, over each branch B, the disjunction




of the formulas on B. Suppose we apply a rule R to T to obtain the extendec
tableau R[(T]. The critical fact is that for each rule R, f(T) 1is equivalent
to f(R[T]). It follows by induction on the number of rules applied in going
from the initial tableau TO with only the root node containing F to the final
closed tableau TC that f(TO) is equivalent to f(TC). But f(TO) is just (AND
(OR F)) which is equivalent to F. And f(TC) is a conjunction of disjunctions
each of which is tautologically true because it contains a formula P and its
denial (NOT P). Thus F is equivalent to a tautologically true formula and

hence must be a theorem.

Before enumerating the rules for extending tableaux, let us explain wny
we have chosen analytic tableaux as the basis of an interactive proof system.
The previous paragraph is the sketch of a proof (given in detail in Chap. 2
of Smullyan) that the method is consistent, i.e., it can never construct a
closed tableau for a non-theorem. It can also be proved (see Smullyan, pp.
57-60) that if F is a valid first-order formula, then there is a finite
closed tableau rooted with F. Thus the method of analytic tableaux 1is as

good in theoretical terms as any proof procedure for first-order logic.

We believe that, besides its theoretical merits, this method is
practical for present-day verification of interesting programs. This is
because it lends itself to a harmonious and flexible mixture of automatic and
interactive proof. The user of our Tableaux System has available & variety
of 1interactive facilities for dividing a large proof into smaller parts,
performing primitive logical operations, invoking lemmas, and investigating
the state of a partial proof. The wuser also has available two powerful
automatic facilities for simplifying algebraic expressions and proving
theorems in a quantifier-free theory of Presburger arithmetic (augmented with
uninterpreted functiqns). This combination of tools leads to a proof style
in which the user does parts of a proof in small, manual steps until reaching
formulas within the domain of the automatic facilities that may then be used

to complete the proof.

We 1like this arrangement for several reasons. First, as we have
remarked, the interactive facilities amplify the power of the completely

mechanical (but semantically restricted) provers now available to permit the
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proof of interesting programs. Second, the structure of the system 1is quite
flexible: as new automatic techniques are developed, we can 1incecrporate them
into our uniform user interface, both simplifying the burden of the user and
extending the potency of the complete system. Finally, we have structured
the system so that the dependence of a proof on particular lemmas, or the
results of automatic theorem-proving components is made explicit. We believe
that the presence of these easily understandable "audit trails" in the
presentation of a proof greatly increases the credibility of the system

compared to that of a system whose final result was a bare TRUE or FALSE.
The rules for augmenting a tableau are as follows:

* ALPHA: If a node contains the formula (OR d1 d2 ...), then the
chain of nodes containing d1, d2, ... may be added at each leaf
below the formula. The intuitive content of this operation is
that to prove a disjunction, it suffices to prove any one of the
disjuncts. This rule also applies to the formula (IMPLIES F1
F2) because of its equivalence to (OR (NOT F1) F2), to the
formula (NOT (NOT F)), equivalent to (OR F), and to the formula

i (NOT (AND c1 c2 ...)), equivalent to (OR (NOT c1) (NOT c2) ...).

% BETA: If a node contains the formula (AND ¢1 c¢2 ...), then the
open leaves below it may each be augmented by adding, as sons,
each of the conjuncts. Note that this differs from the ALPHA
rule where a chain is added with d2 the son of dl, d3 the son of
d2, etc. Here the conjuncts are added as brothers. This rule
permits us to prove a conjunction by proving each of the
conjuncts separately. It also applies to the formula (NOT (OR
d1 d2 ...)), equivalent to (AND (NOT d1) (NOT d2) ...) and to
the formula (NOT (IMPLIES F1 F2)), equivalent to (AND F1 (NOT
DD

* GAMMA: If a node contains the formula (FORSOME x (e x)) (where
(e x) is any formula with free variable x), then the unclosed
leaves below the formula may be augmented by nodes containing
the formula (e a) for any term a. That is, to prove that (e x)
holds for some x it is sufficient to exhibit any such x.
Equivalently, below the formula (NOT (FORALL x (e x))), there
may be appended any instance (NOT (e a)).

* DELTA: This rule provides for formulas of the form (FORALL x (e
x)). The unclosed leaves below such formulas may be augmented
by nodes containing the formula (e (sfi)), where (sfi) is a
newly introduced Skolem function, a function with no special
properties. The basis of this rule is that, if we can prove (e
(sfi)) with no knowledge about sfi, then this is tantamount to
proving (FORALL x (e x)). Similarly, the open branches
containing a formula (NOT (FORSOME x (e x))) may may be
augmented by the formula (NOT (e (sfi))) where, in the same way,
sfi i3 newly introduced.

&
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# INSTANCE: This rule combines the GAMMA and DELTA rules into one,
allowing the user to strip any subset of the gquantifiers 1in a
formula by substituting arbitrary terms for the existential
variables and Skolem functions for the universal variables. For
example, given the formula (FORSOME x (FORALL y (FORSOME z (p x
¥ 2)))), the user might choose to eliminate quantification over
y and z but retain quantification over x. This yields the
formula (FORSOME x (p x (sfi x) t)), where t is any user
supplied term and sfi 1is a system- supplied Skolem function.
Note that to retain soundness, all enclosing existential
indicial variables must be included as parameters of the Skolem
function.

# INVOKE: This rule provides that if a formula p is valid, then
the negation of its universal closure may be appended to any of
the branches of a tableau. Observe that if p is valid, then the
negation of 1its universal closure 1is unsatisfiable. Thus,
#dding this negation to a branch preserves the validity of the
disjunction of the branch's formulas.

® IDENTITY: Suppose two nodes c1 and c2 contain a formula e and
the negation of a universally quantified identity whose matrix
is (EQ eql eqr) or (IFF eql eqr). Then any proper substitution
instance of e with respect to this identity may be appended to
leaves that are descendants of both c¢1 and c2. (A substitution
is proper if none of the variables of the substituted terms are
captured by existential quantifiers of e.) This is the usual
rule of substitutivity of identities.

® ALGEBRA: Suppose a node contains a formula F and the algebraic
simplifier reduces F to F'. Then F' may be appended to open
leaves below F.

# ARITH: Suppose ¢ is a node some of whose ancestors contain the

formulas F1, F2, ..., FN. Suppose the Presburger decision
mechanism can prove the formula P: (IMPLIES (AND (NOT F1) ...
(NOT FN)) F). Then the formula (NOT F) may be appended to the
open leaves below c. This rule may be understood as an
application of the INVOKE rule to the lemma P and the BETA rule
to the resulting node containing (NOT P).

We will describe the facilities now included in the system (which is
still being actively developed) by guiding the reader through the precofs of
two sample theorems. These theorems are two of the verification conditions
that arise in proving the correctness of a string searching algorithm
developed by Boyer and Moore [2]. (In Appendix B, we give a complete

specification of the user command set for carrying out tableaux proofs.)

The first condition to be proved is:

(IMPLIES (AND (AND (EQ PATLEN (LENGTH PAT))
(EQ STRLEN (LENGTH STR)))
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(AND (INT STRLEN) (GTQ STRLEN 0))
(AND (INT PATLEN) (GTQ PATLEN 0))
(AND (BOOLEAN FLG) (EQ FLG 0))
(AND (IS-ARRAY STR)
(EQ (ARRAYTYPE STR) CHARACTER-CONST)
(EQ (DIMENSION STR) 1)
(EQ (UPPERBOUND 1 STR) 1000))
(AND (IS-ARRAY PAT)
(EQ (ARRAYTYPE PAT) CHARACTER-CONST)
(EQ (DIMENSION PAT) 1)
(EQ (UPPERBOUND 1 PAT) 100)))
(AND (AND (AND (EQ PATLEN (LENGTH PAT))
(EQ STRLEN (LENGTH STR)))
(EQ 0 0))
(OR (EQ (STRPOS PAT STR) 0)
(GTQ (PLUS (STRPOCS PAT STR) PATLEN)
(PLUS PATLEN 1))))))

Assuming that this condition 1is the value of the variable vc:1, we begin a
proof of the theorem by the command

*(newproof vec:1)

In the annotated interactions that follow, we will present the user
commands in lower case and preceéed by "¥". System responses will be in
upper case. The system responds to the newproof command by asking for the
declaration of a number of the unknown identifiers that occur in the theorem.

HOW SHCULD PATLEN BE DECLARED? TYPE TERM OR FORMULA

term

HOW SHOULD PAT BE DECLARED? TYPE TERM OR FORMULA

term

HOW SHOULD LENGTH BE DECLARED? TYPE TERM OR FORMULA
term

HOW SHOULD STRLEN BE DECLARED? TYPE TERM OR FORMULA
term

HOW SHOULD STR BE DECLARED? TYPE TERM OR FORMULA

term

HOW SHOULD INT BE DECLARED? TYPE TERM OR FORMULA
formula

HOW SHOULD FLG BE DECLARED? 1YPE TERM OR FORMULA

term

HOW SHOULD BOOLEAN BE DECLARED? TYPE TERM OR FORMULA
term

HCW SHOULD IS-ARRAY BE DECLARED? TYPE TERM OR FORMULA
formula

HOW SHOULD ARRAYTYPE BE DECLARED? TYPE TERM OR FORMULA
term

HOW SHOULD CHARACTER-CCNST BE DECLARED? TYPE TERM OR FORMULA
term

HOW SHOULD DIMENSION BE DECLARED? TYPE TERM OR FORMULA
term

us




HOW SHOULD UPPERBOUND BE DECLARED? TYPE TERM OR FORMULA
term

HOW SHOULD STRPOS BE DECLARED? TYPE TERM OR FORMULA
term

(IMPLIES (AND ...) (AND ...))

TABLEAU SETUP COMPLETED
The system is now ready to proceed with the proof. We begin by telling it to
proceed automatically as far as possible.

*(proofgo)

NEwW NODES: (27 26)

(NODE 30 HAS BEEN CLOSED WRT NODE 4)
NEW NODES: (31 30)

(TABLEAU IS NOT CLOSED)

(CURRENT: LASTNODE : CURRENTTYPE ARE RESPECTIVELY 26 31 BETA)

THE UNCLOSEDLEAVES ARE: ((31) 29)

(NONLOGICAL IS ((31 29 28 25 24 23 22 21 20 19 18 17 16 15
14 13 12 11 10)))

At this point a tableau has been grown with 31 nodes and many of the branches
have been closed automatically. Two branches remain open: those that end in
the leaves 31 and 29. We ask to see the formula at node 31.

*(pf 31)

(EQ 0 0)
Although this formula is obviously true and can be proved by our Presburger
arithmetic theorem prover, the system cannot presently invoke this prover
automatically. So we turn its attention to the formula by means of the
command

*(nextnode 31)
NONLOGICAL

which responds with the logical type of the formula--NONLOGICAL. Next we use
the arithmetic theorem prover. One form of the ARITH rule is invoked by the
function arithc; it tries to prove the current formula by using the formulas
at the argument nodes as hypotheses. In this case, we require no hypotheses,
so the command is just

®#(arithe)

and the system responcs by proving the formula and closing the branch:
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(EQ 0 0) HAS BEEN VERIFIED

(NODE 32 HAS BEEN CLOSED WRT NODE 31)
(TABLEAU IS NOT CLOSED)

(CURRENT:LASTNODE : CURRENTTYPE ARE RESPECTIVELY 31 32 ARITH)
THE UNCLOSEDLEAVES ARE: (NIL 29)
(NONLOGICAL IS ((31 29 28 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10)))

The only open branch is now that ending at node 29. We position the system
at this node

*(nextnode 29)
NONLOGICAL

and issue a command to display the nodes of this branch. (Note that the
current node is denoted by the "€" symbol.)

*(visible)

296(GTQ (PLUS (STRPOS PAT STR) PATLEN) (PLUS PATLEN 1))
28 (EQ (STRPOS PAT STR) 0)

25 (NOT (EQ STRLEN (LENGTH STR)))

24 (NOT (EQ PATLEN (LENGTH PAT)))

23 (NOT (GTQ STRLEN 0))

22 (NOT (INT STRLEN))

21 (NOT (GTQ PATLEN 0))

20 (NOT (INT PATLEN))

19 (NOT (EQ FLG 0))

18 (NOT (BOOLEAN FLG))

17 (NOT (EQ (UPPERBOUND 1 STR) 1000))

16 (NOT (EQ (DIMENSION STR) 1))

15 (NOT (EQ (ARRAYTYPE STR) CHARACTER-CONST))
14 (NOT (IS-ARRAY STR))

13 (NOT (EQ (UPPERBOUND 1 PAT) 100))

12 (NOT (EQ (DIMENSION PAT) 1))

11 (NOT (EQ (ARRAYTYPE PAT) CHARACTER-CONST))
10 (NOT (IS-ARRAY PAT))

We now observe that one of the properties of the subroutine STRPOS is needed
to complete the proof. The required property, called STRPOS:AX1 is

(FORALL S1 (FORALL S2 (OR (EQ (STRPOS S1 82) 0)
(GTQ (STRPOS S1 S2) 1)))))

It is invoked by the command

*¥(invoke (makethm strpos:ax1))
HOW SHOULD S2 BE DECLARED? TYPE TERM OR FORMULA
term

and the user then selects the appropriate instance of the lemma (whose
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negation signifies in the tableaux method that it is assumed) by means of the
dialogue

(NOT (FORALL ::1
(FORALL ::2
(OR (EQ (STRPOS :1 :2) 0)
(GTQ (STRPOS :1 :2) 1)))))

(SUBSTITUTE AT ::1 ?) y OK
(WHAT SUBSTITUTION ?) pat

(SUBSTITUTE AT ::2 ?) y OK
(WHAT SUBSTITUTION ?) str

(THE RESULT OF SUBSTITUTION IS:)

(NOT (OR (EQ (STRPOS PAT STR) 0) (GTQ (STRPOS PAT STR) 1)))
This instantiation of the lemma is of type BETA; appended to the tableau, it
will split into two cases, one with the node (NOT (EQ (STRPOS PAT STR) 0))
and the other with the node (NOT (GTQ (STRPOS PAT STR) 1)). Noting that the
first of these contradicts node 28 and will close immediately, we proceed to
add the instantiated lemma to the tableau.

*(proofgo)

(NODE 34 HAS BEEN CLOSED WRT NODE 28)
NEW NODES: (35 3U4)

(TABRLEAU IS NOT CLOSED)

(CURRENT: LASTNODE : CURRENTTYPE ARE RESPECTIVELY 33 35 BETA)
THE UNCLOSEDLEAVES ARE: ((35))

(NONLOGICAL IS ((35 31 29 28 25 24 23 22 21 20 19 18 17
16 15 14 13 12 11 10)))

This leaves a single open branch terminating in the second case that arises
from the lemma. And this branch can be closed by a simple arithmetic

deduction using the formula at node 29. Thus the proof is concluded by

* (nextnode 35)
NONLOGICAL
#(arithe 29)

(NOT (GTQ (STRPOS PAT STR) 1)) HAS BEEN VERIFIED

(NODE 36 HAS BEEN CLOSED WRT NODE 35)

ug




(THE PROOF IS COMPLETE)

The second condition is:

(IMPLIES
(AND (AND (AND (EQ PATLEN (LENGTH PAT))
(EQ STRLEN (LENGTH STR)))
(EQ FLG 0.)
(OR (EQ (STRPOS PAT STR) 0)
(GTQ (PLUS (STRPOS PAT STR) PATLEN)
(PLUS II 1))))
(AND (IMPLIES (GT II STRLEN)
(AND (EQ FLG 0) (EQ (STRPOS PAT STR) 0)))
(IMPLIES (NOT (GT II STRLEN))
(AND (AND (AND (AND (EQ PATLEN
(LENGTH PAT))
(EQ STRLEN
(LENGTH STR)))
(EQ FLG 0))
(EQ (SUBSTRING PAT (PLUS 1 PATLEN)
PATLEN
(SUBSTRING STR (PLUS 1 II)
(SUBTRACT (PLUS II PATLEN)
PATLEN))))
(OR (EQ (STRPOS PAT STR) 0)
(GTQ (PLUS (STRPOS PAT STR) PATLEN)
(SUBTRACT (PLUS (PLUS II PATLEN) 1)
PATLEN))))))))

The proof of this condition, bound to the variable vc:2, is begun by the
command

*(newproof vec:2)
to which the system responds

(IMPLIES (AND ...) (AND ...))

TABLEAU SETUP COMPLETED
Noting the occurrences of SUBSTRING in the body of this formula, we decide
that we will need to substitute instances of the SUBSTR:NIL lemma which says
that

(FORALL S (FORALL K (FORALL L
(IMPLIES (GT K L) (EQ (SUBSTRING S K L) NIL))))))

The lemma invocation function, like the functions for instantiation, identity
substitution, and algebraic simplification (unless its argument is proved)
shows the user the result that may be appended to the tableau but requires a
proofgo to do the appending. Since we do not, for the moment, want this
proofgo to apply the ALPHA and BETA rules to vc:2, we will force the system

to come back to the user after each rule is applied.
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#(setq automatic nil)

NIL

#(invoke (makethm substr:nil))

HOW SHOULD K BE DECLARED? TYPE TERM OR FORMULA
term

HOW SHOULD L BE DECLARED? TYPE TERM OR FORMULA
term

HOW SHOULD NIL BE DECLARED? TYPE TERM OR FORMULA
term

(NOT (FORALL ::1
(FORALL ::2
(FORALL ::3
(IMPLIES (GT :2 :3)
(EQ (SUBSTRING :1 :2 :3) NIL))))))

(SUBSTITUTE AT ::1 ?) y OK
(WHAT SUBSTITUTION ?) pat

(SUBSTITUTE AT ::2 ?) y OK
(WHAT SUBSTITUTION ?) (plus 1 patlen)

(SUBSTITUTE AT ::3 ?) y OK
(WHAT SUBSTITUTION ?) patlen

(THE RESULT OF SUBSTITUTION IS:)

(NOT
(IMPLIES (GT (PLUS 1 PATLEN) PATLEN)
(EQ (SUBSTRING PAT (PLUS 1 PATLEN) PATLEN) NIL)))

Now, we add this instance of the lemma to the tableau.

*#(proofgo)
(TABLEAU IS NOT CLOSED)

(CURRENT: LASTNODE : CURRENTTYPE ARE RESPECTIVELY 1 2 ALPHA)
THE UNCLOSEDLEAVES ARE: ((2))

(ALPHA IS ((1)))

(BETA IS ((2)))

Next, we create and add to the tableau the other required instance of the
lemma.

®(invoke (makethm substr:nil))

(NOT
(FORALL ::1
(FORALL ::2
(FORALL ::3
(IMPLIES (GT :2 :3)
(EQ (SUBSTRING :1 :2 :3) NIL))))))
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(SUBSTITUTE AT ::1 ?) y OK
i ; (WHAT SUBSTITUTION ?) str

p (SUBSTITUTE AT ::2 ?) y OK
g (WHAT SUBSTITUTION ?) (plus 1 ii)

%A (SUBSTITUTE AT ::3 ?) y OK
] (WHAT SUBSTITUTION ?) ii

(THE RESULT OF SUBSTITUTION IS:)

& (NOT (IMPLIES (GT (PLUS 1 II) II)

%% (EQ (SUBSTRING STR (PLUS 1 II) II) NIL)))
1 % (proofgo)

4

(TABLEAU IS NOT CLOSED)

THE UNCLOSEDLEAVES ARE: ((3))
(ALPHA IS ((1)))
(BETA IS ((3 2)))

Although the ALPHA and BETA rules are applicable to the instances just

i 5 (CURRENT: LASTNODE : CURRENTTYPE ARE RESPECTIVELY 1 3 ALPHA)
g

created, we wish to avoid using them in this way. This is done by

¥ (defer 2)
#(defer 3)

Next, we want to proceed automatically from the current node 1.

%*(setq automatic t)

E(proofgo)

NEW NODES: (13 12)

NEW NODES: (17 16 15 14)

(NODE 28 HAS BEEN CLOSED WRT NODE 9)

(NODE 29 HAS BEEN CLOSED WRT NODE 12)

NEW NODES: (29 28)

! NEW NODES: (31 30)

1 (NODE 32 HAS BEEN CLOSED WRT NODE 12)
(NODE 33 HAS BEEN CLOSED WRT NODE 6)

NEW NODES: (34 33)




(NODE 35 HAS BEEN CLOSED WRT NODE 9)

NEW NODES: (36 35)
NEW NODES: (38 37)
(NODE 41 HAS BEEN CLOSED WRT NODE 6)
% NEW NODES: (42 41)

(TABLEAU IS NOT CLOSED)

v

(CURRENT: LASTNODE: CURRENTTYPE ARE RESPECTIVELY 37 42 BETA)

%: THE UNCLOSEDLEAVES ARE: ((42) 34 36 40)

K (BETA IS (NIL 2 3))

£ (NONLOGICAL IS ((42 4O 39 36 34 26 25 21 20 13

: 12 11 .10 9)))

i B This grows 42 nodes and closes several branches. To see what to do next, we

- obtain a summary of all the open branches.

*(av)
(FROM NODE 34)

34 (EQ (SUBSTRING PAT (PLUS 1 PATLEN) PATLEN)

(SUBSTRING STR (PLUS 1 II)

(SUBTRACT (PLUS II PATLEN) PATLEN)))

25 (GT II STRLEN)
12 (NOT (EQ (STRPOS PAT STR) 0))
11 (NOT (EQ STRLEN (LENGTH STR)))
10 (NOT (EQ PATLEN (LENGTH PAT))) -
9 (NOT (EQ FLG 0))

(FROM NODE 36)

36 (EQ (STRPOS PAT STR) 0)

21 (NOT (GT II STRLEN))

13 (NOT (GTQ (PLUS (STRPOS PAT STR) PATLEN) (PLUS II 1)))
11 (NOT (EQ STRLEN (LENGTH STR)))

10 (NOT (EQ PATLEN (LENGTH PAT)))

9 (NOT (EQ FLG 0))

(FROM NODE 40)

40 (GTQ (PLUS (STRPOS PAT STR) PATLEN)
(SUBTRACT (PLUS (PLUS II PATLEN) 1) PATLEN))
39 (EQ (STRPOS PAT STR) 0)
20 (GT II STRLEN)
i 13 (NOT (GTQ (PLUS (STRPOS PAT STR) PATLEN) (PLUS II 1)))
I 11 (NOT (EQ STRLEN (LENGTH STR)))
f 10 (NOT (EQ PATLEN (LENGTH PAT)))
9 (NOT (EQ FLG 0))
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(FROM NODE 42)

42 (EQ (SUBSTRING PAT (PLUS 1 PATLEN) PATLEN)

(SUBSTRING STR (PLUS 1 II)

(SUBTRACT (PLUS II PATLEN) PATLEN)))

20 (GT II STRLEN)
13 (NOT (GTQ (PLUS (STRPOS PAT STR) PATLEN) (PLUS II 1)))
11 (NOT (EQ STRLEN (LENGTH STR)))
10 (NOT (EQ PATLEN (LENGTH PAT)))
9 (NOT (EQ FLG 0))

DONE

First, we observe that node 40 follows from node 13 with a little arithmetic.

# (nextnode 40)
NONLOGICAL
%(arithe 13)

(GTQ (PLUS (STRPOS PAT STR) PATLEN)
(SUBTRACT (PLUS (PLUS II PATLEN) 1) PATLEN))

HAS BEEN VERIFIED

(NODE 43 HAS BEEN CLOSED WRT NODE 40)

(TABLEAU IS NOT CLOSED)

(CURRENT : LASTNODE : CURRENTTYPE ARE RESPECTIVELY 40 43 ARITH)
THE UNCLOSEDLEAVES ARE: (NIL 34 36 u2)

(BETA IS (NIL 2 3))

(NONLOGICAL IS ((42 40 39 36 34 26 25 21 20 13
12 11 10 9)))

Next, we observe that nodes 42 and 34 can be closed by using arithmetic and

the lemma instances created earlier.

*(nextnode 42)
NONLOGICAL
®*(arithe 2 3)

(EQ (SUBSTRING PAT (PLUS 1 PATLEN) PATLEN)
(SUBSTRING STR (PLUS 1 II) (SUBTRACT (PLUS II PATLEN)
PATLEN)))
HAS BEEN VERIFIED
(NODE 44 HAS BEEN CLOSED WRT NODE 42)
(TABLEAU IS NOT CLOSED)
(CURRENT : LASTNODE : CURRENTTYPE ARE RESPECTIVELY 42 44 ARITH)

THE UNCLOSEDLEAVES ARE: (NIL 34 36)
(BETA 1S (NIL 2 3))
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(NONLOGICAL IS ((42 40 39 36 34 26 25 21 20 13 12 11 10 9)))

T

#(nextnode 34)
NONLOGICAL
®(arithe 2 3)

(EQ (SUBSTRING PAT (PLUS 1 PATLEN) PATLEN)
(SUBSTRING STR (PLUS 1 II) (SUBTRACT (PLUS II PATLEN)
PATLEN)))

HAS BEEN VERIFIED
(NODE 45 HAS BEEN CLOSED WRT NODE 34)
(TABLEAU IS NOT CLOSED)

(CURRENT : LASTNODE : CURRENTTYPE ARE RESPECTIVELY 34 45 ARITH)
THE UNCLOSEDLEAVES ARE: (NIL 36)

- (BETA IS (NIL 2 3))
(NONLOGICAL IS ((42 40 39 36 34 26 25 21 20 13 12 11 10 9)))

T
A single open branch remains, and to close it we must invcke another of the
properties of STRPOS.

#(pnextnode 36)

NONLOGICAL

®(invoke (makethm strpos:ax2))

HOW SHOULD S2 BE DECLARED? TYPE TERM OR FORMULA
term

(NOT (FORALL ::1
(FORALL ::2
(OR (EQ (STRPOS :1 :2) 0)
(LTQ (PLUS (STRPOS :1 :2) (LENGTH :1))
(PLUS 1 (LENGTH :2)))))))

(SUBSTITUTE AT ::1 ?) y OK
(WHAT SUBSTITUTION ?) pat

(SUBSTITUTE AT ::2 ?) y OK
(WHAT SUBSTITUTION ?) str

(THE RESULT OF SUBSTITUTION 1S:)
(NOT (OR (EQ (STRPOS PAT STR) 0)

(LTQ (PLUS (STRPOS PAT STR) (LENGTH PAT))
(PLUS 1 (LENGTH STR)))))
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*(proofgo)

(NODE 47 HAS BEEN CLOSED WRT NODE 36)
NEW NODES: (48 47)

(TABLEAU IS NOT CLOSED)

(CURRENT: LASTNODE : CURRENTTYPE ARE RESPECTIVELY 46 48 BETA)
THE UNCLOSEDLEAVES ARE: ((48))
(BETA IS (NIL 2 3))
(NONLOGICAL IS ((48 42 40 39 36 34 26 25 21
20 13 12 11 10 9)))

*(visible 48)

48 (NOT (LTQ (PLUS (STRPOS PAT STR) (LENGTH PAT))
(PLUS 1 (LENGTH STR))))
36 (EQ (STRPOS PAT STR) 0)
21 (NOT (GT II STRLEN))
13 (NOT (GTQ (PLUS (STRPOS PAT STR) PATLEN) (PLUS II 1)))
11 (NOT (EQ STRLEN (LENGTH STR)))
10 (NOT (EQ PATLEN (LENGTH PAT)))
9 (NOT (EQ FLG 0))

A proofgo has closed off the easy case of the lemma, and a summary of the
open branch that is left shows that some appropriate arithmetic deduction

will finish up the proof.

#(nextnode 48)
NONLOGICAL
#(arithc 21 13 11 10)

(NOT (LTQ (PLUS (STRPOS PAT STR) (LENGTH PAT))
(PLUS 1 (LENGTH STR))))

HAS BEEN VERIFIED
(NODE 49 HAS BEEN CLOSED WRT NODE 48)

(THE PROOF IS COMPLETE)
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C. Other Interactive Facilities
1. Facilities Supporting Hierarchical Yerification

In our earlier report, (7], Sec. VII, we described a plan for a
set of interactive facilities to support hierarchical verification. These
facilities have been implemented during the RPE/2 phase of our work, in
fulfillment of Task C of our Statement of Work which calls for "means for
carrying out top-down/bottom-up proofs of program correctness for well-
structured programs". In this subsection we describe the user-oriented

facilities that our system provides for conducting such proofs.

The program structuring feature of JOCIT that best lends itself to
hierarchical verification is procedure abstraction. We include therein the
closely allied notion of functional abstraction--a function declaration
differs from procedure declarations only in that no formal output parameter
list is provided for functions. We have, therefore, based our approach to
hierarchical verification (either top-down or bottom-up) on the use of JOCIT
formal procedures. Another important aspect of hierarchical verification
methodologies [13] is the notion of data abstraction. Unfortunately, JOCIT
does not provide primitive constructs supporting data abstraction, and thus

it is not within the scope of this effort.

a. Top-Down Verification

The verification system features discussed here are embedded
in the verification condition generator (VCG) subsystem; they have already
been described briefly in Section C. We describe here how these features

enable one to carry out top/down program verification with our system.

A JOCIT main program will be processed by VCG (after
transduction) to produce a set of VCs for the main program. These VCs will
be stored in a Lisp variable named, for example, MPG*, if the main program is
MPG. (Main programs do not have names in JOCIT, hence a suitable name must
be provided by the user.) If MPG contains no embedded procedures (i.e., is
nonhierarchical), all of these VCs pertain directly to MPG at a single
abstraction level. Proof of their validity by our tableaux decuctive system

concludes the single-level (nonhierarchical) verification process.
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Suppose, on the other hand, that MPG contains one or more
procedure declarations. In the process of computing the VCs (MPG%*) for MPG,
he VCG subsystem will report to the user the names of procedures that it has
discovered, and it will ask the user if he wishes their VCs to be computed at
that time. If the user is employing the system to conduct verification
concurrently with a top-down design, he will want to defer that computation.
For example, a declaration for some procedure PROC1 contained in MPG may
consist essentially of a formal parameter list and declarations, and it may
contain only a dummy body, such as BEGIN END or a comment. The declaraticns
within this unelaborated procedure should, however, contain at least an entry
assertion and an exit assertion. These assertions specify what the procedure
is supposed to do after it has been implemented. They must, of course, refer
to the formal input and output parameters of the procedure. In this
incomplete state, it would be meaningless to have VCG compute the VCs for
PROC1, and the user will, therefore, defer that part of the VCG process.
This approach corresponds to a top-down programming style, i.e., programming
by successive refinements. Even though MPG might contain one or more calls
to the still-unelaborated procedure PROC1, the VCG will preduce an
appropriate set of VCs for MPG, making use of the formal entry/exit
assertions for PROC1. If these assertions are consistent with the way in
which PROC1 is used in MPG, the main program VCs, MPG¥, will be valid and
presumably provable by our deductive system. That proof will show that the
abstract implementation of MPG is consistent with the specifications for
PROC1 (and any other unelaborated procedures directly contained within MPG.)
Note, in particular, that, when this proof is carried out, the deductive
system will not have to be separately informed (e.g., by means of axioms)
about the procedural construct PROC1. The relevant information (extracted
from the formal parameter 1lists and the entry/exit assertions) will be
instantiated by the actual values for each call, and it will have been
inserted into MPG*. (See the discussion about WP:CALL in Section C). This
top-down verification style is suitable when procedures contained in a main
program are L0 be explicated later. The important point here is that it will
be possible to verify the consistency of MPG with the specifications for
PROC1 (and any other procedures contained directly within MPG) before writing

the actual code for these procedures.
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However, at some later time the human programmer/verifier will
wish to implement PROC1. At that time he will supply the missing body to
PROC1, which might in turn contain references to other, lower-level
procedures. In carrying out the next level of top-down programming and
proof, the programmer has several choices. He may wish to go back to the
original JOCIT main program and fill in the missing body for PROC1. After
that, the next step would be to redo the parse and transduction of the
modified main program. This is, of course, the most natural and systematic
approach. However, a more direct approach can alsc be taken if one assumes
that the user 1is sufficiently conversant with the abstract syntax to write
the missing body for PROC1 directly in transduced form. He can do this
within the VCG environment by invoking the MACLISP editor facility on the
Lisp data structure PROC1, which is extracted from the main program MPG at
the time the top-level VCG pass is made. The editor is invoked on procl by
the commands:

(edit)
yp procl value <esc> <escd>

whereupon the transduced PROC1 declaration will appear in "windowed" form and
the user can replace the dummy body by an actual one. For example, the dummy
body might appear as "(BEGIN)," corresponding to the JOCIT syntax, BEGIN END.
The user could use the Lisp editor's i(nsert) command to place the desired
body statements after the word BEGIN. (Note: this description is based on
the TECO-like string editor provided in TENEX MACLISPs; the edit function in
MULTICS MACLISP is somewhat different in style.) The user would, probably,
however, wish to confirm at some point that the abstract syntax he has thus
hand-coded really corresponds to actual JOCIT. Thus, when he ultimately
rewrites the JOCIT main program, he should redo the parsing and check that
the parsed PROC1 is identical to the one he wrote directly. The virtue of
working directly in the abstract syntax is that one may, thereby, eliminate
several iterations through the parser. This would be the case if the code

for PROC1 requires several successive changes before it is verifiable.

It should be noted that this method of elaborating a procedure
declaration does not require the user to edit the abstract main program

within which the procedure is declared. The corresponding editing of the
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main program will occur automatically because Lisp uses structure sharing,

and PROC1 simply points to the procedure declaration substructure under MPG.
Thus, when PROC1 has been proved correct at the next 1lower level of
verification, the user can rewrite the JOCIT program in accordance with the
edited MPG, reparse the program, and compare the resulting parse, say
newparse, with the edited MPG (by means of the MACLISP function EQUAL), thus:
(equal MPG newparse)

The next 1level of verification consists in generating the VCs for PROCT.
This is the step that was deferred in generating only the top-level VCs for
MPG. The user can do this either by again calling VCG on MPG or simply by
invoking VCG:ALL (which handles VCG for main programs, subprocgrams,
functions, procedures, and closes) on PROC1 (and any other procedures
directly contained in MPG). If he elects the first option, the user will
recompute the same top-level VCs (i.e., MPG*) and will again receive a
message regarding the computation of VCs for PROCIT. This time, he should
answer "yes" to the system's query. The body of PROC1 will then be analyzed
by the verification condition generator, and VCs for it will be computed and
stored under the variable PROC1#¥, e the body of PROC1 contains
(sub)procedure declarations, the process already described for the MPG level
will be repeated, with the same user options, at the level of the procedure
PROC 1.

When all procedures, subprocedures, sub-subprocedures, etc.,
have been explicated in this way down to the level of JOCIT primitives, the
user will have in hand a set of pointers to the main program and all of its
subentities. Their names appear on the global variable, PROGRAMSLIST. He
will also have a set of pointers to all of the VCs that have been generated.
The names of these pointers appear on another global 1list, VCSLIST. These
lists record for the user (and for the file-making mechanism) what portions
of the main program have been analyzed by VCG. Upon each completion of VCG,
the wuser is asked whether he wishes to save the computed VCs on a file
(together with the main program). This option need not be exercised until
the entire top-down VCG process is complete, unless it is desired to save the
partial results. Whenever the answer 1is "yes," a MACLISP-loadable file

containing MPG and all VCs determined up to that time will be stored in the
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user's directory under the name MPG.VCS (where MPG is the name of the main

program).

The user need not defer verification of the VCs until all VC
levels have been computed. In fact, there is likely to be some advantage in
using the deductive system to check the validity of VCs at each hierarchy
level before proceeding to the next. In this way the user can detect
programming errors before refinement has gone too far. In this case, the
user should follow the following protocol:

Answer "yes" to the file-making query at each stage of refinement
of his program.
Exit to the Tableaux system environment.

Load the file ® VCS that has just been written by VCG, and invoke
NEWPROOF successively on each clause of each entity (e.g., MPG#*, or
PROC1#*, etc.) in the VCSLIST.

Reenter the VCG environment, and proceed to the next stage of
refinement.

b. Bottom-Up Verification

We have just described how program verification concurrent
with design can be carried out under our system according to a top-down,
successive refinement paradigm. The corresponding bottom-up process is
supported equally well by our system; however, the purely bottom-up approach
appears intrinsically less attractive than the top-down method for reasons
independent of our implementation. These reasons will become clear in the
discussion that follows. In summary, it will be established that some top-

down thinking is a necessary part of bottom-up design/verification.

To carry out a bottom-up design with concurrent verification,
the user must begin with some notion, at least, of the overall procedural
hierarchy. He must, for example, have in mind some of the lower-level
procedures that will wultimately be needed in his overall design. The user
begins with a tentative design for one of the JOCIT procedures at the lowest
level of the planned hierarchy. This procedure 1is first parsed and
transduced by the methods described in Section II, Subsection B. The

specifications attached to this procedure should, however, be adequate to
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prove VCs for the next higher level of the procedural hierarchy. The user
must be aware in advance of how he plans to use each procedure at the next
higher level. A safe strategy is to specify low-level procedures with the
strongest possible assertions--that is, to include in the exit assertion all
properties of the exit parameters that could possibly be proved, and to make
the entry assertion as general (i.e., as weak) as possible, subject to the
correct functioning of the procedure. An example of the latter would be to
refrain from restricting the domains of input parameters unless this is
absolutely required by the functions and operations to be contained in the
procedure body. VC generation is carried out for this low-level procedure
(and others at the same level) exactly as described for the top-down process
in the preceding subsection. These VCs are then proved by means of the
deductive system, Jjust as under the top-down process. This completes the

design, implementation, and proof for the lowest level.

The user then proceeds to the next higher level by writing
JOCIT procedures that call the lowest-level procedures. These next-level
procedures are subjected successively to parsing/transduction and VCG.
However, the analysis of the low-level procedures by VCG can be inhibited (by
answering "no" to the system-generated query) because VCG has already been
carried out on these procedures. The user also allows the VCG system to make
a file containing the verification conditions for that 1level (accumulating
those at the lower levels as well, if he wishes--this is determined entirely
by the names appearing on PROGRAMSLIST and VCSLIST). Finally, the tableaux
system is applied to the new VCs. In this way the wuser will build up his
JOCIT program from the bottom, verifying at each stage that the visible
program is consistent with the assertions at that level and with the (already
proved) properties of the procedures it calls. When the top level (the final
program) 1is reached, verification of the top-level VCs (e.g., MPG#) by
Tableaux shows that the main program is consistent with its assertions, and
this completes the proof. It would be wise at this point to regenerate all
the VCs from the top level on down, as a double check that the bookkeeping
operations in making successive VC files have not gone astray. These
regenerated VCs can be checked mechanically against the saved VCs that were

proved by tableaux during the bottom-up process. The means for doing the

61




checking were described in the preceding subsection in relation to comparing

two parses.

In summary, it should be clear from the foregoing discussion
that this process of building up a program by writing successive layers of
procedures starting from the lowest level and working up demands a good deal
of planning and forethought by the programmer. The general plan for the
overall program must initially be, at least, in the back of the programmer's
mind, if not well thought out. Moreover, entry and exit assertions for
procedures at each level must reflect their anticipated uses at the next
level. Finally, the data structures involved in low-level procedures will
have to reflect the data structures at the higher (as yet undesigned) levels
if the technique is to succeed. This last observation is relevant to
considerations of data abstraction which we have necessarily excluded from
consideration in this project. The reader is referred to [13] for a detailed

discussion.

To conclude this subsection we should note that when our
system is used purely for ex post facto verification of an existing program,
then it is essentially irrelevant whether proof is carried out by the top-
down or the bottom-up process. The only difference is the order in which
procedures of the hierarchy are verified in terms of the specifications for

lower-level procedures.

2. The Use of Dummy Assertions

Next, we discuss some additional features that were not covered in
the preceding discussions of the top-down and bottom-up protocols. It is
often inconvenient to include detailed assertions (especially for the loop
assertions) in the early stages of top-down verification. One reason for
this is that they may have to be modified when the program is debugged.
However, the parser is relatively insensitive to the syntactic forms of
assertions. In consequence, one may use one or the other of two informal
kinds of M"assertion abstraction" to simplify or curtail iterations through
the parser.
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In the first method tc be described, the user supplies only
mnemonic JOCIT names for one or more of the assertions. These names will
later be replaced by fully explicated Boolean forms. The second method is a
refinement of the first wherein dummy predicate forms are used for the
assertions, but where the dependence of these predicates on selected program

variables is made explicit.

We begin with a description of the first technique. The user
writes a top-level program in JOCIT with all 1loop assertions (and perhaps
also the input and output assertions) in the form of single mnemonic words,
e.g., INASRT, OUTASRT, LOOPASRT1, LOOPASRT2, etc. Of course, these words
must be acceptable to JOCIT syntax, so only legal JOCIT names are allowed.
The following forms are permitted, respectively, for loop assertions, input
assertions, and output assertions:

ASSERT LOOPASRT1 $
ASSERTIN INASRT $
ASSERTOUT OUTASRT $

The parser/transducer will convert these assertions, respectively,

into the transduced forms:
(ASSERT LOOPASRT1)
(ASSERTIN INASRT)
(ASSERTOUT OUTASRT)

One advantage in deferring the choice of explicit assertions is
that the user can thereby concentrate 1initially on achieving syntactic
correctness for the JOCIT program itself, apart from the assertions. Another
advantage is that he can execute VCG on this dummy-asserted program to check
the flow of control between assertion points. This process is equivalent to
a limited symbolic execution of the program in which mainly the control
semantics are checked. The checking is not, however, automatic; the user
must examine the generated VCs by eye and decide whether they conform to his
expectations. He can check that the correct number of VCs 1is being
generated. (This number will not change when the assertions are later
explicated). He can also check the branch points of the program to see that
at each branch, control is being transferred to the expected assertion point.
Branch points (stemming from IF and IFEITH statements) correspond in the VCs

to forms such as:
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(AND (IMPLIES test-condition DUMMY-ASRT1)
(IMPLIES (NOT test-condition) DUMMY-ASRT2))

These dummy-name assertions are not meaningful for the final VCG process

because the dependence of the assertions on the program variables must be

made explicit before the VCs will reflect partial correctness.

At this point, the user can apply either of the following two
strategies or, as we shall see, some convenient combination of the two:
# Introduce explicit assertions in place of the dummy names used
thus far, or

® Introduce dummy functional forms that parameterize the
assertions without committing the wuser to specific functional
forms.

The second of these strategies is the method of dummy predicate forms which
we mentioned at the beginning of this subsection. The choice between these
modes will depend on the user's confidence 1in getting the right assertions
quickly. If he 1is confident in his ability to do so, he should write
assertions (in abstract syntax) using the program variables and bind these
assertions to the corresponding Lisp atoms used as dummy assertions. For
example, the user might choose to define LOOPASRT1 completely by typing in:
(SETQ LOOPASRT1 '(AND (GTQ XX 0) (LTQ XX YY) (LT YY NN)))
He then needs to modify the transduced main program (MPG), where LOOPASRT1
appears, by expanding LOOPASRT1 in accordance with this definition. This is
most easily done by typing:
(DSUBST LOOP\SRT1 'LOOPASRT1 MPG).

Each dummy assertion used in MPG must be dealt with similarly. As
a result, MPG will be a version of the transduced MPG containing fully
explicated assertions. This version can then be subjected to the generation
of VCs, viz, by calling (VCG MPG). Observe, too, that if these dummy
assertions were buried within subprocedures to MPG, any existing bindings to
these subprocedures will be left intact because DSUBST uses the same
structure sharing as the editor, i.e., it does not make copies. The same
desirable result holds when the DSUBST 1is carried out at the level of a
subprocedure, i.e., the main program (or any procedures above the DSUBST'd

procedure) will be altered correspondingly.
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On the other hand, the second mode for instantiation of dummy-name
assertions permits the user to approach the construction of loop assertions
(and entry/exit assertions) in a more gradual manner. The technique is
similar to that of the first mode except that the user need only supply the
appropriate program variable names for each dummy assertion, leaving the
functional forms of the assertions to be determined later. For example, the
loop assertion, LOOPASRT1, might be defined by typing:

(SETQ LOOPASRT1 '(LA1 XX YY NN))
where the user anticipates that only the variables XX, YY, NN will be needed
in the ultimate assertion, and he leaves the form of the dummy predicate LA1
to be determined later. After all the dummy-name asserticns have been
defined either in this partially expanded form or by explicit forms, and the
appropriate DSUBST operations have been carried out, VCG may then be invoked
on the program. The user needs to examine the resulting VCs closely to
determine the functional forms for the dummy predicates LA1, etc., that
satisfy these VCs. In general this is a difficult process, but the human
program verifier should be able to bring to bear his understanding of the
program and its intent to facilitate the task. In fact, he may combine the
two modes of instantiation by writing partial explications for some
assertions in such forms as:

(SETQ LOCPASRT1 '(AND (GTQ XX 0) (LTQ XX YY) (LA11 YY NN))).
Here, the user presumably knew (or guessed) the relations among O, XX, and
YY, but was unsure of the proper relation between YY and NN. By leaving that
portion of the assertion in parameterized dummy form, he may be able to
determine quickly from the VCs that the appropriate relational operator is LT
(and not, e.g., LTQ).

The reader is referred to [6] for a more detailed discussion of
techniques for generating adequate inductive assertions. In particular, the
method of finite difference equations (described there) is applicable to the

invention of many types of algebraic invariants.
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3. User-Defipned Comstructs in the Assertion Language

In the immediately preceding discussion, we have described some
user-oriented features that enable a human programmer/verifier to work with
dummy assertions during the process of writing and verifying a program. By
using those features he is, in effect, creating user-defined predicates of a

k very local and temporary sort. These assertion forms disappear before the
final VCG process and, therefore, play no part in the actual deductive proof.
i In contrast, we next describe a mechanism whereby the user may introduce

formal definitions for constructs that he may wish to use over a considerable

&

period of time for verifying different programs. The algebraic simplifier
‘J- contains built-in features (described below) that provide the system user
f; : with means for creating his own assertion language of functional (and
ﬁ predicate) abstractions and integrating them into the deductive mechanisms.

The assertion language accepted by the deductive system is thereby made to be
user-extendible. See also, [7], pp. 71-7T4, for a description of the RPE/1

version of this feature.

Assertions written in terms of JOCIT primitives tend to be rather

lengthy, even for small, "toy" programs. In part, this is because the
relational primitives (the equality, nonequality, and inequality relations)
are at too low a level. For many programs one needs to have relational
abstractions concerned with higher-level data structures, e.g., arrays,
files, tables, records, etc. One set of facilities for introducing such
abstractions exists in the Tableaux system's mechanism for invoking lemmas

(see Section B).

However, invoking axioms for each occurrence of some user-defined
construct can prove to be excessively tedious in running the deductive
system. For one thing, the user must supply instantiations for each axiom
invocation. We could, for example, handle deductions about the JOCIT
intrinsic function for absolute value (ABS) entirely by introducing the
axiom:

(FORALL X (AND (IMPLIES (GTQ X 0) (EQ X (ABS X))
, (IMPLIES (LT X 0) (EQ (MINUS X) (ABS X))))).

This axiom tells the deductive system all it needs to know about the function

ABS. In practice, this would make proofs even of such elementary facts as
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(EQ (ABS (ABS (ABS (ABS X)))) (ABS X))
rather tedious. The tableaux proof of this fact would require numerous
separate instantiations of the above ABS axiom, each time with different

user-supplied bindings.

An alternative we have investigated is to incorporate rewrite rules
for these functions into the simplifier. The rule for ABS could contain the
knowledge that, for numeric x, ,
(ABS x) = if x>0 then x else -x, §
b . and also the knowledge that (ABS (ABS x)) = (ABS x), even though this fact is
deducible from the definition, and is, therefore, redundant. Any invocation
. of ALGEBRA from the deductive system then automatically attempts to simplify
A forms of the type (ABS ®* ) by rewriting them. In this approach instantiation

2 is automatic, unlike the application of axioms by INVOKE in the Tableaux

subsystem. Similar rules have been built into the simplifier for functions
such as MAX, MIN, and, of course, for the algebraic functions PLUS, TIMES,
SUBTRACT, MINUS, DIVIDE, and EXPT (which are primitives in JOCIT, wunder the
usual infix operator names, +, *, -, /, and *%) as well as for the relational
operators, EQ, NEQ, LT, GT, LTQ, and GTQ (corresponding to the JOCIT infix
primitives, EQ, NQ, LS, GR, LQ, and GQ).

It is highly desirable to allow the user to create his own rewrite
rules for the simplifier to facilitate deductions for new, user-defined

abstractions without the need for invoking axioms.

In the fast string search program that we have verified (see also
Section B), extensive use was made of user-defined abstractions as parts of
the program's loop assertions. For example, (LENGTH string), (STRPOS stri
str2), and (SUBSTRING string k 1) all figure in one or more assertions.
STRPOS is central because the program 1is, in effect, supposed to compute
(STRPOS pat str) = the first position, j, in str where pat matches the
substring of str from j to (LENGTH pat)-1. The proof shown in Section B
depends on the invocation of several plausible axioms relating these three
abstractions. An alternative is to incorporate directly into the expression
simplifier enough information about these string function abstractions to
permit the simplifier to handle some or all of the proof. For example, the
axiom, SUBSTR:NIL:
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(IMPLIES (GT K L) (EQ (SUBSTRING str k 1) NIL))

could readily have been set up as a conditional rewrite rule for SUBSTRING.

In order to provide the system user with a convenient facility for
constructing such rewrite rules, our simplifier contains a function, SPECIFY,
which automates much, but not all, of the effort entailed in this
construction. See [7], pp. 71-73 for a discussion of SPECIFY and how it is

used.

To construct a rewrite rule for SUBSTRING the user calls SPECIFY
with arguments supplying the name of the construct (i.e., SUBSTRING), a
formal parameter list (in this case, str, k, and 1), and a list of special
cases under which specified simplified forms are to be returned by the
simplifier. There is also an optional argument that permits the user to
specify (when appropriate) that the function has certain special properties,
such as commutativity. SPECIFY then constructs a rewrite rule SUBSTRING$
that combines these simplifications in a single Lisp function. This rule is
invoked whenever the simplifier sees an expression of the form (SUBSTRING ¥ #

L

Our work with this part of our system has pointed up some problems
associated with the use of systems of rewrite rules, and with SPECIFY in
particular. First, the function, SPECIFY, is far from being an automatic
rewrite rule generator. It lacks the ability to perform pattern-match
compilation, which would be a very desirable feature. With pattern matching
in the construction of rewrite rules, we could simply input a set of
algebraic specifications to this new system, and have it construct for us the
detailed Boolean tests needed to match these specifications. Given a
suitable parser (e.g., one constructed by the parser-generator technique) one
might even input algebraic specifications in a non-Lisp syntax. A second,
more general, problem associated with this kind of deduction is that
simplifier rules need to interact in peculiar ways, e.g., Since the functions
ABS, SQRT, and (TIMES x x) are all inherently nonnegative, one would like the
forms, (ABS (ABS X)), (ABS (SQRT X)), and (ABS (TIMES X X)) simply to return
the arguments to the outermost ABS. However, in order to make this fact

known to the rule for ABS, one needs to put into ABS$ a great deal of
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information about other functicnal constructs. Moreover, when the system is
extended by adding new user-defined constructs, the possibilities for such
interactions may multiply rapidly. It 1is likely that these considerations
set some sort of practical limit to what one can conveniently do in deduction
simply through the use of rewrite rules. Fortunately, our system is also
able to handle arbitrary information in the form of predicate calculus axioms
when the capabilities of algebraic simplification are strained by the above
considerations. The two approaches complement one another in nice ways. It
is likely that both types will continue to play a role in both automatic and

semiautomatic deductive systems.
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V  RPE/2 ON RADC-MULTICS

A. Introduction

Task D (Item U4.1.4) of our Work Statement requires us to "investigate
the transferability of the verification files by installing as much as
necessary of the SRI PDP-10 files on the Honeywell 6180 MULTICS system to run
a simple JOVIAL (J3) program for verification." Although we planned
initially to transfer the RPE/1 system to the RADC-MULTICS computer to
satisfy this requirement, it proved possible to transfer the entire RPE/2

verification system and use it for the demonstration run.

The files and sample programs required to carry out this verification
are now part of user Spitzen's file directory on RADC-MULTICS. In this
chapter, we first describe the translation of portions of the original
INTERLISP verifier into the MACLISP language available both on SRI's KL-20
computer and RADC's Honeywell 6180 MULTICS system. We next describe the
transfer of the resulting MACLISP programs to RADC-MULTICS. Finally, we
describe the JOVIAL (J3) program that we verified at RADC-MULTICS. Appendix
C gives detailed instructions for reproducing this verification run.

B. Iranslation to MACLISP

As indicated above, we initially set out to translate the existing RPE/1
verifier from its implementation in INTERLISP into a version of MACLISP
available on the SRI KA-10 computer. As the translation effort progressed,
it became clear that with relatively little extra effort we could carry on
most of the development work for the RPE/2 system directly in MACLISP. From
about June 1976 on, that strategy was followed. As a result, by the end of
1976 we had a usable MACLISP implementation for RPE/2. Some changes were
carried out beyond that time, but the system framework was essentially
complete.
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The MACLISP system originally available on the KA-10 was Version 1132,

running under TENEX. This has been successively replaced by Version 1251 and
most recently by a version called 1MID or 1258. Observable differences
between these Tenex MACLISPs have been negligible in their effect on our
work. Apparently, the implementers of this language have been concerned with
various improvements in efficiency of speed, storage, and garbage collection,
but they have maintained upward compatibility between versions. In fact,
code compiled wunder Version 1251 appears to run properly under the newest
(1MID-1258) executive and even on our new machine (SRI-KL). Fortunately, we
have not been plagued by compatibility and conversion problems as a result of

these language and machine changes.

A second, relatively minor conversion was involved when we mounted the
MACLISP system on the RADC-MULTICS (Honeywell 6180) computer. The MACLISP
system on that machine was, naturally, a MULTICS version. Initially, we had
some problems in getting accustomed to MULTICS conventions, but these
problems largely solved themselves in time. Apart from minor differences in
the I/0 features and certain functions in MULTICS MACLISP which had to be

synthesized at SRI, we encountered no problems in this second phase.

The starting point for the MACLISP RPE/2 system was taken from the RPE/1
INTERLISP files for the tableaux deductive system and the algebraic
expression simplifier, the latter a subsidiary package used by the tableaux
system. An improved Presburger mechanism was rewritten for RPE/2 in
INTERLISP and converted to MACLISP in November-December 1976 by special means
described below. The VCG subsystem was begun in INTERLISP, carried about
half-way to completion (providing only the basic core constructs), then
translated into MACLISP. This core of the final MACLISP VCG was used in the
RADC-MULTICS sample demonstration. VCG was completed early in 1977 entirely
in MACLISP by making modifications and additions to the core VCG subsystem.
The tableaux deductive system was similarly developed in MACLISP from the
initial MACLISP version.

The parser/transducer represents a different situation, because it is a
machine-synthesized file package; its mode of construction is described in

general terms at the end of this subsection. For details of the
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parser/transducer the reader is referred to Section II-B. Documentation for
MACLISP is comparatively poor, and somewhat out of date; the most recent
definitive description is [12]. Fortunately, we were also able to obtain
from MIT a draft document containing detailed comparisons of MACLISP with
INTERLISP. These notes supplied, for each of the major functions of
INTERLISP, a description of the corresponding feature in MACLISP, or--if none
existed--with equivalent MACLISP code. We carefully tested each such
equivalence before adopting it.

We now describe briefly the principal differences between INTERLISP and
MACLISP that affected our translation. In addition to these, there are many
other differences that affect the form of a user's commands to the system.
For example, MACLISP lacks the evalquote mode, which lets the INTERLISP user
type FOO(X) with the same effect as the more cumbersome (FOO 'X). Making
files and saving core images differ not only between INTERLISP and MACLISP
but also among different MACLISPs and different machines. Conventions for
user interrupts (e.g., the use of control characters) are different between
INTERLISP and MACLISP, but fortunately they are fairly standard between
MACLISP implementations.

The following very useful functions of INTERLISP are entirely lacking in
MACLISP (or are so d.fferent that they must be hand coded):

ADDPROP, ALPHORDER, ARGLIST, ATTACH, CHANGENAME, CHANGEPROP, COPY,
COUNT, DEFLIST, DREMOVE, DSUBST, EQP, EQLENGTH, EVERY, FASSOC,
FILEPOS, FNTYP, GETD, INTERSECTION, LCONC, LDIFF, LISTP, LITATOM,
LOADFNS, LOADVARS, MAKEFILE, MOVD, NCHARS, NCONC1, NEQ, NLISTP,
NTH, PACK, PACKC, PROG1, REMOVE, SELECTQ, SOME, SPACES, SUBPAIR,
SUBSET, TCONC, UNION, UNPACK.

To avoid confusion, in the remainder of this section we will refer to
INTERLISP functions in uppercase characters and to MACLISP functions in
lowercase. Note that some names occur in both languages, but with different

meanings.

Most of the functions listed were created in terms of MACLISP primitives
and saved in a basic Library Functions file (LIB.MAC). This file also

contains a few other functions so widely used throughout the verifier that
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they belong in a common library (even though they are not primitive to
INTERLISP). LIB.MAC also contains some versions of MACLISP primitives so
modified as to behave like their INTERLISP analogues. For example, (FIX
-1.5) = =2, while (fix -1.5) = -1; hence fixx was defined to act 1like FIX.
Similarly, since (zerop 'a) causes an error interrupt while (ZEROP 'A) = NIL,
a function, zerops, was defined to match ZEROP. The library function file

package LIB.MAC was later compiled into a binary file LIB.FAS.

Many of the differences between MACLISP and INTERLISP stem from
fundamental differences in function definition and concept. For uncompiled
functions, MACLISP has only the types '"expr" and "fexpr" (correspending to
INTERLISP types, EXPR anc “EXPR*). MACLISP's exprs also cover what are
called EXPR®*'s in INTERLISP. There is no MACLISP analog to INTERLISP
YEEXPR"™, Whereas INTERLISP stores function definitions in a special
"function cell", MACLISP stores them as expr or fexpr properties of the
atomic function symbol. In MACLISP, calls to exprs must be supplied with
exactly the right number of arguments, unlike the sometimes handy (but often

dangerous) INTERLISP default: binding missing arguments to NIL.

Fortunately, J S. Moore developed a superb translation tool, called
MACLISPIFY. A portion of the smail development cost of this suppert software
was borne by another project. MACLISPIFY is best described as an interactive
translator-builder; it 1is coded in INTERLISP. Source code and compiled
versions are on directory <MOORE>MACLISPIFY on SRI-KL. In its pristine
state, MACLISPIFY is acquainted with the conventions of INTERLISP, including
the names, numbers of arguments, and types of all INTERLISP functions.
MACLISPIFY allows the user, as he proceeds, to build up a set of translation
rules (called "translation augments") between INTERLISP and any other Lisp
dialect. Moore also supplied us with a set of primitive translation zugments
for many of the most common MACLISP functions (including the special forms
discussed below). The user of MACLISPIFY can simply turn it loose on a set
of function definitions in INTERLISP by typing:

(APPLY 'MACLISPIFY fnslist T)
where fnslist 1is bound to the list of function names. MACLISPIFY is then

invoked successively on the definitions of each function on fnslist. The
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user is asked whether he wishes MACLISPIFY to recursively pursue the
Maclispification of subroutines. He can reply either A(sk me each time for
permission to Maclispify them), M(aclispify them without asking), or D(on't
Maclispify them). When MACLISPIFY encounters an expression whose CAR lacks a
translation rule, it asks the user if he wishes to supply one. The user's

options at this point are to respond with one of the following:

<linefeed>
= <function-name>
N(o) => Always bring it to my attention.

M(aybe later) => The form will be brought to your attention when
the parent form has been Maclispified. No augment 1is created
for this function symbol now, and you will be asked this
question again the next time the function symbol is seen.

Y(es) => causes the Editor to be entered with a standard augment

template.

The first option converts the INTERLISP name to its lowercase (MACLISP)
equivalent, and also proceeds to "Maclispify" each argument expression. This
user response is appropriate much of the time, i.e., whenever MACLISP uses a
function with the same name and semantics as INTERLISP. Examples of this
are: CONS->cons, LIST->list, CAR->car, etc. All such obvious instances have
already been provided with transduction augments in the initial set; thus,
the user would not be asked this question for functions like CONS, LIST, CAR,

and CDR--only for functions lacking a translation augment.

The second option is wused when there is a semantically equivalent
function in the MACLISP environment with a different name than the INTERLISP

function to be translated. The pair MEMB, memq is an example.

Neither of the first two options 1is appropriate when INTERLISP and
MACLISP have functions with the same names but different semantics. The
mapping functions, MAPCAR, MAPC, MAP, MAPCON, and MAPLIST are good examples
for several reasons. First, the argument order is reversed in MACLISP, i.e.
(MAPCAR LST 'ATOM) is correctly rendered as (mapcar 'atom lst), and similarly
for the other mapping functions. Also, mapcar, mapc, etc., can take any
number of 1ist arguments; that number must be equal to the number of

arguments required by the functional argument. On the other hand, INTERLISP

-




mapping functions can take an optional third (functional) argument to be used
(instead of the default CDR) for iterating down the 1list. (A minor
difference: the sixth mapping function, MAPCONC, corresponds to mapcan,
instead of "mapconc".) Our version of MACLISPIFY uses one fairly complicated
augment, {STANDARD-MAP-AUGMENT}, to cover all these contingencies for the six
mapping functions simultaneously. For example, when MACLISPIFY sees an
INTERLISP form like (MAP LST 'ATOM 'CDDR), the warning message is printed out
on the user's terminal: "MACLISP mapping functions do not accept the third
INTERLISP argument."

A great virtue of MACLISPIFY is that the user interactively builds up a
set of translation rules as he proceeds to translate his INTERLISP code.
Once a translation rule has been supplied to it, MACLISPIFY will in the
future automatically use that rule to perform translations for that function
symbol. The MACLISPIFY system is extremely easy to use by virtue of the
human engineering that has gone into its design. At places where the user
might be in doubt as to how to proceed, typing "?" will tell him what

options are open to him at that point.

MACLISPIFY stores translation augments as no-argument function
definitions for INTERLISP names surrounded by curly braces, {}. For example,
the simplest possible augment (created whenever the user uses the <linefeed>
lowercasing option) is (LAMBDA NIL form). This is the augment for CONS,
LIST, CAR, CDR, etc. Augments of the second type (created by = <function-
name>) have the form, e.g., {MEMB} = (LAMBDA NIL (CONS 'memq arglst). More
complicated augments than these must be written by the user, working within
the INTERLISP editor.

For example, the translation augment:

{PUT} = (LAMBDA NIL (LIST 'putprop argl arg3 arg?)
would be written by the user to indicate that the translation for (PUT A I V)
should be (putprop a v i). A useful convention with MACLISPIFY is that ARG1,
ARG2,... denote the original (INTERLISP) arguments to a form, while argl,
arg2,... denote their Maclispified versions. A similar convention applies
to the pairs, FNNAME, fnname; ARGLST, arglst; and FORM, form. All of these

names are used freely by the translation functions, with FORM being bound to
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the form currently under translation and FORM = (FNNAME ARG1 ARG2 ...) =
(FNNNAME . ARGLST).

The so-called special forms of INTERLISP, such as SELECTQ, COND, and
PROG, which do not first evaluate (a2all) their arguments (or which evaluate
them in a nonstandard order), need special treatment for Maclispification.
MACLISPIFY provides built-in handling for such forms. Note, too, that
INTERLISP (but not MACLISP) allowo initialization of PROG variables in the
declaration clause. Hence, the INTERLISP code:

(PROG ((X 1)(Y LST)) ...)
is automatically rewritten as:

(prog (x y) (setq x 1) (setq y 1lst) ...)
by MACLISPIFY.

Finally, let us mention the translation of CLISP contructs into MACLISP.
CLISP forms (see, e.g., [17]) provide a kind of "unofficial™ INTERLISP in
which a user can type in rather free form expressions (e.g., a great variety
of iterative statements, pattern-matching expressions, infix forms, etc.) to
INTERLISP, even though these forms are not directly comprehensible by the
INTERLISP interpreter or compiler. They are intercepted by the DWIM ("Do
What I Mean") mechanism (part of the INTERLISP Programmer's Assistant) and
translated into standard INTERLISP before interpretation. DWIM contains
canned rules for expanding CLISP iterative forms, e.g.,

(for X from 1 to 100 while (NOT (FOO X)) do ...),
into explicit PROG loops. MACLISPIFY wuses this DWIM compiler first to
translate CLISP forms into INTERLISP, but it also leaves the original CLISP
in place as a comment in the expanded code if the user wishes. Then the main
body of MACLISPIFY translates the INTERLISP code, leaving the comment still
in the MACLISP translation for clarity.

The MACLISPIFY system also asks the user to specify, for each MACLISP
function name, whether it refers to a S(ystem) function, a L(ibrary)
function, a U(ser) function, or simply to F(orget it!). In this way,
MACLISPIFY is able to allocate it to a suitable list for filing. "System"
functions are supposed to be the primitives of MACLISP (or whatever Lisp

dialect one 1is translating into); "library" functions have already been
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described; "user" functions are supposed to be part of the package being
translated. When MACLISPIFY exits, it creates both an INTERLISP file with
all of the information that has been processed and a MACLISP-loadable file
with definitions of functions for the translated cocde in the form of putprop
statements. In the INTERLISP file, the definitions of MACLISP functions are
saved as expr or fexpr properties of the (lowercase) function names. All of
the translation augments (the initial set plus augments created by the user

during the session) are also saved on the INTERLISP file for future use.

We now discuss the parser/transducer "translation® process. The details
of our construction of the parser/transducer are given in Section II-B.
Since the parser/transducer is a machine-synthesized subsystem of the
verifier, it would have been inefficient to produce first a parser/transducer
in INTERLISP and then translate it into MACLISP. Instead, the parser-
generator (an INTERLISP software tool that produces the parser/transducer
from a syntactic description of the target language) can produce either an

INTERLISP or a MACLISP parser for the target language.

C. Iransfer to RADC-MULTICS

Having obtained MACLISP scurce code for the verification system, we used
the ARPANET File Transfer Program (FTP) running at MULTICS to move the source
files from the SRI KL-20 to the RADC-MULTICS system. (Because of problems
with FTP on the KL-20, we were not able to use it to "send" source files to

RADC; all file transfer was achieved by "getting" files from SRI to RADC.)

We then attempted to run the verification system composed of these
transferred files in MULTICS MACLISP. Minor problems were encountered:
* A number of primitive functions in MULTICS MACLISP, for example,
charpos, must be synthesized in KL-20 MACLISP.

¥ The input and output primitives of MULTICS MACLISP and KL-20
MACLISP wuse slightly different conventions. Also, the file
systems of the two machines use different methods for naming
files.

In all cases, however, minor reprogramming sufficed to obtain source files
that run correctly with MULTICS MACLISP.
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D. Sample Verification at RADC-MULTICS

The program that we verified 1is given in Appendix C, Part 1. It
searches for a floating point number VV in an array AA of length 1000. If
the number is found within the initial segment of AA of 1length NN, the
program halts with the Boolean FLG set to 1 and the integer LOCN set to the
first index of VV in AA. If the number is not found in this segment, the
program halts with FLG set to 0 and the temporary variable INDEX set to NN+1.
These conditions are described in formal terms by an output assertion at the
program label OUT; the verification also requires three inductive assertions
at labels L1, L2, and L3. The entire program is 37 lines long and includes

23 lines of assertions and 14 of declarations and executable code.

The first step in verifying this program is to parse and transduce it
into the abstract syntax processed by the verification condition generator.
This is done by invoking the lisp system at MULTICS and issuing the command

(load "loadjmac.mac")
which causes the parser to be 1loaded into the MACLISP environment. When
loading is complete, the loading program types the message

"Ready to parse."

The user may now invoke the parser by calling the function parse whose
single argument 1is the name of a file containing a JOVIAL program to be
verified. In the example, the required command is

(parse "search. joc")

Following the parse and transduction of the source file, the variable
parse is bound to the resulting abstract form. Because we were running with
2 limited number of available segments, it was not possible to configure a
single MACLISP environment containing the entire verification system. At
this point, we must, therefore, send the abstract form to a file, which we do
by issuing the commands

(setq svars '(abstractsearch))
(setq abstractsearch parse)
(mfile s)

This causes the file s.mac to be created containing the abstract syntax and
thus completes this phase of verification. The abstract syntax for the

sample program is given in Appendix C, Part 2.

78




=

B
E

£

¥
~
&

Next, it 1is necessary to generate verification conditions from the
abstract syntax. We must first escape from lisp teo the MULTICS command level
and invoke a new 1lisp environment. This environment is configured for
generating verification conditions by issuing the command

(load "loadvcg.mac")

When the system is ready, we reload the abstract program by saying

(load "s.mac")
and are then ready to generate verification conditions by commanding

(veg abstractsearch)
which results in the binding of the variable abstractsearch* to a list of the
verification conditions for the program - five in this example. We then
complete the verification condition generation phase by adding the elements
abstractsearch*, al, 22, a3, ali, and a5 to the list svars, binding a1, a2,

a3, ald, and a5, respectively, to the five elements of abstractsearch®, and

commanding
(mfile s)
to write a new s.mac including the verification conditions. These five

conditions are given in Appendix C, Part 3.

We are now ready to prove these verification conditions. We escape tc
MULTICS command level, obtain a new lisp, and say

(load "loaddeduct.mac")
to configure an environment with the deductive system. We are then ready to
prove, in turn, each of the five verification conditions. It turns out that
al and a5 can be proved with just a few user commands, a3 and ad can be
proved automatically, and a2 requires a somewhat lengthy dialog. The details

are given in Appendix D, Part 4.
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10

1M

12

13

Grammar Rules

@ -3

10
11

12

13
14

15
16

17

18
19

20
21
22

23
2l

25
26
27

#RROQOT **

<prog>

<a\p\1>

<alt\stat>

<aopl>

<assign\stat>

<bch>

<body>

<cht>

<const\list>

<const\listq>

<constant>

<controls>

<controls2>

Appendix A
JOCIT GRAMMAR

<prog> RIGHT\PAD

<main\prog>
<{sub\prog>

¥¥ompt y¥ ¥
( <fstrdot> <aopl> )

IFEITH <f> § <stat>
<orif\listpls> END

$Hompt y#E
= <onamepls>

<variable> = <f> ¢

B
CH

Eompt y*#
<body> <decl>
<body> <labelstr> <stat>

CH
T

BEGIN\ <dclpls> END

.'empty..
<const\list>

CHARACTER\CONSTANT
STATUS\CONSTANT
<numeric>

<controls2>
{controls2> ASSERT\ASSUME <f>

ALL ( NAME )
<>
Y KD
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b

14

15

16

17

18

19

20

2

22

28

29

30
31

32
33

34

35
36
37

38

39
4o

41
u2
L&

4y
L5
L6

47
48
49
50
51
52
53
54

55
56

57
58

<cstat>

<{decl>

<dclpls>

<{decl>

<dti\decl>

<dti2>

<dti3>

<dtil>

<dti5>

&, P, O
BEGIN <body> END

<const\list>
<os\const>

{dcl>
<dcipls> <dcl>

ARRAY NAME <intpls> <i\desc> $
<const\listq>

ASSERTINOUT <f> $

CLOSE NAME $ <cstat>

FILE NAME <bch> <file\size> <vr>
<record\size> FILE\STATES
NAME $

ITEM NAME <i\desc> <pq> $
<const\listq>

ITEM NAME <os\const> $

PROC NAME <parameters> $
<pddpstr> <cstat>

PROGRAM NAME $

SWITCH NAME = ( <insdlpls> ) $

SWITCH NAME ( NAME ) =

( <itsdlpls> ) $

<overlay\decl>

<str\il\decl>

<table\prfx> <packingq> $ BEGIN
<oeildecl> <oeid\sodpls> END

<table\prfx> <packingg> L $

<table\prfx> DECIMAL\INTEGER $
BEGIN <dtid\sidpls> END

ITEM NAME <dti2> <packingq> $
<const\listqg>

<i\desc2> <integer> <integer>
Al <integer> <su> <dti3>

<plusmin> <integer> <dtil>
<integer> <dtil>
<dtid>

R <dti5>
<dti5>

RANGE\PRFX <numeric> <dtib>
<dtib>
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"b.

24

25

26

28

29

30
31

32

33

34

35
36

38

59

60
61

62
63

64

65
66

67
68

69
70

71

72
73

4
75

76
77
78
79

80
81
82
83
84

85

&6
87

88
89
90
91

92
93

<dti6>

<dtid\sid>

<dtid\sidpls>

<exch\stat>

<2

<f2>

<£3>

<fU>

<f5>

<f6>

<E(>

<f£8>

<file\size>

<fpls>

<{fplsdot>

<fstrdot>

" non "nn

<integer> <integer>

<dti\decl>
<str\i\decl>

<dtid\sid>
<dtid\sidpls> <dtid\sid>

<variable> == <variable> ¢

<f> OR <f2>
<f2>

<f2> AND <f3>
<£3>

NOT <f£3>
<FU>

<f5> <rel\sufxstr>

<f5> <plusmind> <f6>
<F6>

<Ff6> <multdiv> <£7>
SET>

<ET> *% (FB>

<f7> LPAR\STAR <f> STAR\RPAR
LPAR\SLSH <f> SLSH\RPAR

<f8>

€ <> )
<constant>
<func\ref>
<variable>
<plusmin> <f8>

= <constant>

<>
<fpls> , <f>

NAMEDOT

<>

<fplsdot> , <f>
<fplsdot> , NAMEDOT

..empt y.'
<fplsdot>
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39
40
41

42

Por o

43

ST ot

&

4y

A T

L6

47

ug

49

50

5

52

53

54

55

94
95
96
97
98
99
100
101
102

103
104

105
106

107
108

109
110

m
112

3
114

115
116

17
118

119
120

121
122

123

124
125

<func\ref>

<goto\formula> ::

<goto\stat>

<i\desc>

<i\desc2>

<inout\stat>

<{inputs>

<inputsqg>

<insdl>

<insdlpls>

{integer>

<integerq>

<intpls>

<iolist>

<iolistgqg>

<itsdl>

<itsdlpls>

nn " n "nn

NAME ( <fstrdot> )

NAME <xq>

GOTO <goto\formula> $

AI <{integer> <su> <os\intgq> <rq>

<rangeq>
<i\desc2>

B
F <rq>

S <integerq> <statuspls>
<cht> <integer>

INOUT NAME <iolist> $
OPSH INOUT NAME <iolistq> $

<inputs> , <oname>

<oname>

..empty..
<inputs>

..empty'.

<goto\formula>

<insdl>

<insdlpls> , <insdl>

DECIMAL\INTEGER

OCTAL\INTEGER

..empty'l
<integer>

DECIMAL\INTEGER
<intpls> DECIMAL\INTEGER

<>
<iolist> ,

..empty'.
<iolist>

<os\const>

<itsdl>
<itsdlpls>

A

’

84

<goto\formula>
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56

57

58

59

60

61

62

63

64

65

66

67

68

137
138
139
140

141

142
143

14y
145

146
147

148
149

150
5

152
153
154
155
156
154

158
159

160
161

<labelstr>

<letter>

<main\prog>

<multdiv>

<{namepls>

<nameplspls>

<nameplsstr>

<nameq>

<numeric>

<oeildecl>

<oeid\sod>

<oeid\sodpls>

<oname>

Lol I 5 o g o I s s

"nn "non n nonn "nn non " n

*¥ empt y.'
<labelstr> NAMEDOT

Al

B

CH

DMN
EGJKOQWXYZ

START $ <body> TERM <nameq> $

*
4

NAME
<namepls> , NAME

= <namepls>
<nameplspls> = <namepls>

"empty*.
<nameplspls>

..empty'.
NAME

FIXED\CONSTANT
FLOATING\CONSTANT
<integer>

ITEM NAME <i\desc> $
<const\listg>

<oeildecl>
<overlay\decl>

<oeid\sod>
<oeid\sodpls> <oeid\sod>

NAME
NAMEDOT
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<{oname>
<onamepls> , <oname>

I 69 162 <onamepls>
163

70 164 <orif\listd <labelstr> ORIF <f> $ <stat>

71 165 <orifllistpls> ::= <orifilist>

2 166 <orifl\listpls> <orif\list>
B
s 72 167 <origing> = #Reqptyh®
168 = <integer> =
§ 73 169 <os\const> = + <constant>
L 170 = - <constant>
A Ui = <constant>
e
B, 74 172 <os\intq> = <{integerq>
E . 173 = <plusmin> <integer>
.
- 75 174 <outputsg> = #loppt y##
-4 . 175 = = <inputs>

76 176 <overlay\decl> ::

OVERLAY <origing> <namepls>
<nameplsstr> $

77 177 <packingqg> = REempt yR#
178 = DMN
78 179 <parameters> Stempt y*#

nwon

180 ( <inputsg> <outputsq> )

79 181 <pcall\stat> ::= NAME <a\p\l1> $

80 182 <pddpstr> ERempt yk®

183 <pddpstr> <decl>
81 184 <plusmin> = +

185 z -
82 186 <pg> = &doppt yke

187 = P <os\const>

83 188 <rangeq> *tempt y#®

189 RANGE\PRFX <numeric>
84 190 <record\size> = <numeric>
85 191 <rel\sufxstr> #hompt y#®

192 <rel\sufxstr> REL\OP <f5>

86 193 <return\stat>

RETURN §
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88

89

90

91

92

93

94

45

96

97
98

194
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209

210
211

212
213

214

215

216
217
218

219
220

221
222

223
224

225
226

2217

228
229

<rq>

<stat>

{statuspls>

<{stop\stat>

<str\ildecl>

<str\cases>

<{str\cases1>

<str\cases2>

<str\cacses3>

<su>

<{sub\prog>

<{subprog\prfx>

oo

n n

¥Eompt yRE
R

ASSERT\ASSUME <f> §$
DIRECT JOVIAL

FOR <letter> = <controls> §$
IF <f> $

<alt\stat>
<assign\stat>
<cstat>

<exch\stat>
<goto\stat>
<inout\stat>
<pcall\stat>
<{return\stat>
<{stop\stat>
<test\stat>

STATUS\CONSTANT
<{statuspls> STATUS\CONSTANT

STOP $
STOP NAME ¢

STRING NAME <i\desc2> <integer>
<integer> <packingg> <integer>
dinteger> $ <const\listq>

STRING NAME AI <integer> <su>
<str\cases> $ <const\listgq>

<plusmin> <integer> <str\cases1>
<integer> <str\casesl>
<{str\cases1>

R <str\cases2>
<{str\cases2>

RANGE\PRFX <numeric> <integer>
<integer> <str\cases3>
<integer> <integer> <str\cases3>

DMN <integer> <integer>
<integer> <integer>

S
U

<subprog\prfx> <body> TERM $

CLOSE NAME $ START $
START PROC NAME <parameters> $
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99

100

101

102

103

104

105

106

107

230

231

232
233

234
235

236
237
238
239
240
241
242
243
2uy
245

2u6
2u7

248

249
250

<{table\prfx>

<{table\size>

<{table\sizeq>
<test\stat> =

<{tssq> G

<variable> e

<vr>

<x> L

<xq> oy

TABLE <nameq> <table\sizeq>
<{tssq>

<vr> <numeric>

<table\size>

TEST ¢
TEST <letter> $

..empty"
P
S

ENTRY ( NAME <x> )

FUNC\MOD <xq> ( <variable> )

NAME

NAME <x>

NAME LPAR\DOLL <f> ... <f>
DOLL\RPAR

NAME LPAR\DOLL RANGE\PRFX <f>
DOLL\RPAR

= <letter>

R
v

LPAR\DOLL <fpls> DOLL\RPAR

'.empt y..
<x>
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2.  Diagnostics

'? ERASING RULES 4 7 12 18 92 107 109 115 121
3 126 148 150 167 174 177 179
182 186 188 191 194 232 236
249

LEFT-RECURSIVE RULES 13 14 33 63 65 67 72 T4 76 77
87 90 91 105 112 118 120 125
127 145 147 159 163 166 183
192 211
3 RIGHT-RECURSIVE RULES 69 84

4 SELF-EMBEDDING RULES 240

e 3. Cross References
G ) a. Nonterminals
THE SYMBOL OCCURS IN LHS OF AND IN RHS OF
<a\p\1> 45 181
<alt\stat> 6 200
<aopl> 78 5
<assign\stat> 9 201
<bch> 10 1 37
<bod y> 12 13 14 13 14 29 141 227
<cht> 15 16 102
<const\list> 17 19 30
<const\listgq> 18 19 34 38 49 155 214
215
<constant> 20 21 22 81 85 169 170 171
5 <controls> 23 24 198
<controls2> 25 26 27 28 23 24
y <estat> 29 36 40 202
<del> 30 31 32 33
89
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1

<dclpls> 32 33 17 33 i
<decl> 34 35 36 37 38 39 13 183
4O 41 42 43 Uy 45
46 47 48
<dti2> 50 51 49
<dti3> 52 53 54 51 ,
cdeid> 55 56 52 53 54 }
<dtis> 57 58 55 56 {?
-~ <dti6> 59 57 58
ff i <dtildecl> 49 60
2 <dtid\sid> 60 61 62 63
s <dtid\sidpls> 62 63 48 63
<exch\stat> 64 203
<S> 65 66 6 9 24 26 27 27 |

28 28 28 35 65 78
77 80 86 87 89 90 |
119 120 164 196
199 243 243 244

2> 67 68 65 66 67 i
<£3> 69 70 67 68 69 i
<ru> 71 70 |

1 5> 72 73 71 72 192

; <r6> h 75 72 73 T4

: 7> 76 77 78 79 74 75 76 77
8> 80 81 82 83 84 76 79 84
<file\size> 85 37
<fpls> 86 87 87 248

<fplsdot> 88 89 90 91 90 91 93




<fstrdot>
<func\ref>
<goto\formula>
<goto\stat>
<ildesc>
<i\desc2>
<inout\stat>
<{inputs>

¥ <inputsq>
<insdl>
<insdlpls>

| <{integer>

{integerqg>

<intpls>
<iolist>
<iolistg>
<itsdl>
<itsdlpls>
<labelstr>

<letter>

<main\prog>

f <multdiv>

92 93

94
95

96

97 98

...........

99 100 101 102

103
105
107
109
1M

113

115
117
119
121
123
124
126
128
133
138
141

142

104
106
108
110
112

114

116
118
120

122

125
127
129

134
139

143

130 131 132
135 136 137
140

5 94

82

96 110 123

204

34 38 155

50 98 214

205

105 108 175

180

11 112

42 112

50 50 51 52 53 59
97 102 116 154
168 173 214 215
216 217 221 221
222 223 223 224
224

101 172

34 118

103 120 122

104

124 125

43 125

14 127 164

198 235 245

T4
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<{namepls>
<nameplspls>
<nameplsstr>
<nameq>

<numeric>

<oeildecl>
<oeid\sod>
<oeid\sodpls>
<oname>
<{onamepls>

<orifi\list>

<orif\listpls>

<origing>
<os\const>
<os\intq>

<outputsq>

<overlay\decl>

<packingq>
<parameters>
<pcall\stat>
<pddpstr>
<plusmin>
<pq>

<{prog>

<rangeq>

144
146
148
150

152

155
156
158
160
162
164
165
167
169
172
174
176
177
179
181
182
184
186
23
188

145
147
149
151

153

157
159
161

163

166
168
170
173
175

178
180

183

185

187

189

154

171

145 146 147 176

147 149
176
141 230

22 57 189 190 221
231

U6 156

158 159

46 159

105 106 162 163
8 163

165 166

6 166

176

31 39 123 187
97

180

44 157

46 47 49 214

40 229

206

40 183

52 72 84 173 216
38

1
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<record\size>
<rel\sufxstr>
<return\stat>
<rqg>

<{stat>

<{statuspls>
<stop\stat>
<{str\cases>
<str\cases1>
<str\cases2>
<str\cases3>
<str\i\decl>
<{su>
<sub\prog>
<subprog\prfx>
<table\prfx>
<table\size>
<table\sizeq>
<test\stat>
<tssq>

<variable>

<vr>
<x>

<xq>

190

191 192

193

194 195

196 197 198 199 200
201 202 203 204 205
206 207 208 209
210 21

212 213

216 217 218

219 220

221 222

223 224

214 215

225 226

2217

228 229

230

231

232 233

234 235

236 237 238

239 240 241 242 243
2uh 215

246 2u7
248

249 250

37
71 192
207
97 100

6 14 164

101 211
208

215

216 217 218
219 220
221 222
45 61

51 97 215
3

227

46 47 48
233

230

209

230

9 64 64 83 240

37 231
239 242 250

95 240

93
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b. Terminals
THE SYMBOL

$

ALL

AND

ARRAY

ASSERTINOUT

ASSERT\ASSUME

B

BEGIN

OCCURS IN THE RHS OF

6 9 34 35 36 37 38 39 40 41 42
43 46 47 48 49 64 96 103 104
141 155 164 176 181 193 196
198 199 212 213 214 215 227 228
229 234 235

5 25 42 43 80 94 180 239 240

5 25 42 43 80 94 180 239 240
142

76

169 184

27 28 87 90 91 105 112 120 125
145 163

170 185
2u3
143

8 9 U2 43 123 146 147 168 175
198

64

51 97 128 215
#8#SPECIAL SYMBOL®##

25

67

3y

35 #88SPECIAL SYMBOL ###

24 196 #88SPECIAL SYMBOL®##
10 99 129

29 46 U8
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BEGIN\

CH
CHARACTER\CONSTANT
CLOSE
DECIMAL\INTEGER
DIRECT

DMN

DOLL\RPAR
EGJKOQWXYZ

END

ENTRY

F

FILE
FILE\STATES
FIXED\CONSTANT
FLOATING\CONSTANT
FOR

FUNC\MOD

GOTO

IF

IFEITH

INOUT

ITEM

JOVIAL

L

17

11 15 130 *#%SPECIAL SYMBOL*##
20

36 228

48 113 117 118

197

131 178 223
*¥%SPECIAL SYMBOL¥##¥

243 244 248

132 %%¥SPECIAL SYMBOL###
6 17 29 46 48

239 ##¥SPECIAL SYMBOL**¥
100 133

37

240 ER¥SPECIAL SYMBOL¥##*#%

199

6

103 104 ¥%¥SPECIAL SYMBOL ###
38 39 49 155

197

47 134

95




LPAR\DOLL

LPAR\SLSH

LPAR\STAR

NAME

NAMEDOT

NOT

OCTAL\INTEGER

OPSH

OR

ORIF
OVERLAY

P

PROC
PROGRAM

R
RANGE\PRFX
REL\OP
RETURN

S
SLSH\RPAR
START

STAR\RPAR

STATUS\CONSTANT

STOP

243 244 248

78

77

25 34 36 37 38 39 40 41 42 43
43 49 94 95 103 104 144 145 151
155 160 181 213 214 215 228 229
239 241 242 243 24y

88 91 127 161

69

14

104 #88SPECIAL SYMBOL ###
65

164

176

135 187 237

4o 229

41

55 136 195 219 246

57 189 221 244

192 #88SPECIAL SYMBOL###
193

101 137 225 238

78

141 228 229

77

21 210 211

212 213
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STRING 214 215
SWITCH 42 43
T 16 138
TABLE 230
TERM 11 227
TEST 234 235
U 139 226
' 140 247
c. Special

Al : Al
ASSERTINOUT : ASSERTIN ASSERTOUT
ASSERT\ASSUME : ASSUME ASSERT
CH : CH
DMN : DMN
EGJKOQWXYZ tEGJKOQWIXYZ
ENTRY : ENTRY ENT
FUNC\MOD

CHAR MANT
INOUT + INPUT OUTPUT
OPSH : OPEN SHUT
REL\OP : EQ GQ GR LQ LS NQ

: ABS POS NENT NWDSEN BIT BYTE ODD LOC

9

3
|
|
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Appendix B
TABLEAUX GLOSSARY

(Asterisks denote optional arguments.)

ALPHA The CAR of this variable is the list of active ALPHA nodes. The CDR
is the list of deferred ALPHA nodes. See also: FORMULATYPE(F).

ALGEBRA(C) The algebraic simplifier is applied to the formula at node C,
which must be an ancestor of CURRENT. If the result is T, it is
appended to the tree below CURRENT (see PROOFGO for details) and closes
the open leaves accessible from CURRENT. 1f the result is NIL, the user
is so informed; this means that the node is useless in completing the
proof. Otherwise, the user is asked whether the simplified form should
be appended to the tree and may respond with N (for No) or Y or 0O (for
Yes or OK).

ANCESTOR(C) Is C an ancestor of CURRENT?

ALIST(C1 C2) Returns the instantiation (if any) that may be used as a second
argument to INSTANCE to instantiate the formula at node C1 so that the
result contradicts the formula at node C2.

ARITH(F NODES) Apply the Presburger procedure to the assertion that the
conjunction of the negations of the formulaze at the nodes specified by
the list, NODES, (each node of which snould be an ancestor of CURRENT)
implies F. 1f this assertion 1is proved, the negation of F is appended
to the tree below CURRENT. If the assertion is not proved, a possible
counterexample is given. F is a fermula, either typed in by the user,
or supplied by, e.g., (GETFORMULA c¢). The first option is wuseful for
deriving intermediate results not appearing in the tableau.

ARITHC(C1 C2 ...) This is equivalent to
(ARITH (GETFORMULA CURRENT) '(C1 C2 ... )).

AUTOMATIC If AUTOMATIC is NIL, then each PROOFGO will perform a single
tableaux operation; otherwise, PROOFGO will repeat as long as there is
an unused ALPHA, DELTA, or BETA node.

AV() For each unclosed leaf C, type the message (FROM NODE C) and then do a
VISIBLE(C).

BETA The CAR of this variable 1s the list of active BETA nodes. The CDr is
the list of deferred BETA nodes. See also: FORMULATYPE(F).

CURRENT This is the node in the tableau that will be used in the next tree
augmenting operation. For details, see PROOFGO, ALGEBRA, ARITH, ARITHC,
INSTANCE, and INVOKE.

CURRENTTYPE This is the type of the next cperation to be performed. It is
equal to FORMULATYPE(CURRENT) unless a call has just been made on
ALGEBRA, ARITH, ARITHC, INSTANCE, or INVOKE.
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DEFER(C) Give node C "deferred" status; automatic PROOFGO will not consider
it, and VISIBLE will hide it. If C is CURRENT, then CURRENTTYP® is set
to NIL.

DELTA The CAR of this variable is the list of active DELTA nodes. The CDR
is the list of deferred DELTA nodes. See also: FORMULATYPE(F).

DEFAULTNODES This integer determines the maximum number of nodes that will
be permitted in the tableau begun by a NEWPROOF.

FATHER(C) Returns -1 if C is the ROOT.

FILTERS If K is an element of this 1list, then SHOW will suppress pairs
(K . V) in printing nodes. See SHOW for a 1list of the possibile
settings.

FORMULATYPE(F) The types are ALPHA (OR, IMPLIES, NOT-AND, NOT-NOT), BETA
(AND, NOT-IMPLIES, NOT-OR), GAMMA (FORSOME, NOT-FORALL), DELTA (FORALL,
NOT-FORSOME), NONLOGICAL (everything else).

GAMMA The CAR of this variable is the list of active GAMMA nodes. The CDR
is the 1list of deferred GAMMA nodes. A GAMMA node is automatically
deferred by a PROOFGO from that node. See also: FORMULATYPE(F).

GETFACT(K) Returns the dotted pair (K . V), if any, such that (K . V) is
recorded at an ancestor of CURRENT, and no pair (K . V') is recorded at
any more recent ancestor of CURRENT.

GETJUSTIFICATION(C) Returns the JUSTIFICATION, if any, of node C. This is
equivalent to (CADR (LOCALGETFACT 'JUSTIFICATION) C).

GETFORMULA(C) Returns the formula at node C.

HCSIZE This is the size of the HCONS hash array. A REHASH(N) sets HCSIZE to
TABLESIZE(N), a twin prime greater than or equal to N. Note that
TABLESIZE(TABLESIZE(N))=TABLESIZE(N).

IDENTITY(C) Invoke the identity substitution rule. C must be either an
ancestor or a descendant of CURRENT, and the formula at C must be a
negated universally quantified identity. Both EQ and IFF are acceptable
identity relations. Refer to the formula at CURRENT as F. If C is a
descendant of CURRENT, a NEXTNODE(C) is automatic. If there is exactly
one instance of the right- or 1left-hand side of the identity in F, the
only possible substitution is made; the result becomes NEWFORM, and the
JUSTIFICATION becomes IDENTITY. The NEWFORM is pretty-printed, and the
user may do a PROOFGO to append it below (the new) CURRENT. If more
than one substitution is possible, the wuser is asked to designate a
subset of the possibilities and the designated substitutions determine
the NEWFORM.

INSTANCE (NODE ALIST) Construct an instance of the formula at NODE, which
must be an ancestor of CURRENT. The user specifies quantifiers to be
skolemized or instantiated in either of two ways. If ALIST is no%t NIL,
it 1is assumed to specify the names of the indicial variables to be
instantiated and the instantiations desired. If ALIST 4is NIL, the
system asks the user which indicials are to be instantiated and what
instantiations are desired. Following instantiation, the resulting
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formula is pretty-printed on the user's terminal. At this point NEWFORM
is the instantiation, and JUSTIFICATION is (CONS 'INSTANCE ALIST). The
user may call PROOFGO to append NEWFORM to the tableau below CURRENT (or
the the user can forget the instantiation by issuing a NEXTNODE, calling
INSTANCE again, ete.).

INVOKE(LEMMA) The universal closure of LEMMA 1is instantiated in the second
way described under INSTANCE (the null ALIST case). NEWFORM becomes the
negation of the instantiation, and JUSTIFICATION becomes (CONS 'LEMMA
ALIST). The user proceeds by calling PROOFGO (or discarding the
instantiation) as described under INSTANCE.

JUSTIFICATION This is the Jjustification (see SHOW for a 1list of the
possibilities) for the operation to be done on CURRENT.

LASTNODE This is the number of the node most recently added to the tableau;
it is set to the literal atom UNDONE if that node has been excised by
UNDO.

LEAFP(C) Is C a leaf?

LEFTBROTHER(C) Returns -1 if C is leftmost of the brethren.
LEVEL(C) Returns the depth of C in the tableau.

LMB(C) Returns the leftmost brother of node C.

LOADPROOF(FILE) The argument FILE is not evaluated. The file FILE.PRF must
exist on the user's directory. It is assumed that this file was created
by a call to SAVEPROOF, and the proof state at the time of the SAVEPROOF
is reinstated.

LOCALGETFACT(K C) Returns the dotted pair (K . V), if any, recorded at node
(80

MAKETHM(X) The result is the formula X formatted as a lemma and suitable as
an argument to INVOKE. MAKETHM is normally called automatically when a
proof is completed successfully. It may also be used directly by the
user, but it must be noted that the use of unverified 1lemmas can
invalidate an otherwise sound proof.

NEWPROOF (THM NAME*) Initialize a tableau for a proof of THM. If any of the
symbols in THM are not known to the system, it will ask that they be
declared as TERMs or FORMULAs. If the proof succeeds in closing all
branches, then NAME is set to MAKETHM(THM). Several parameters may be
changed from their normal values prior to this call: the parameter
HCSIZE controls the size of the initial hcons hash array and should be
set to 2000 for proving 1large formulas; the parameter DEFAULTNODES
controls the maximum number of nodes that can be generated during the
course of a proof and should be set to 300 or 400 for large formulas.

NEXTNODE (C) Consider the node C, which becomes the CURRENT node. CURRENTTYPE
is set to FORMULATYPE(C). If CURRENTTYPE is ALPHA, BETA, GAMMA, or
DELTA, a PROOFGO() will augment the tableau according to the appropriate
tableaux rule. Alternatively, the user may proceed by invoking some
other deductive procedure such as ARITH, ALGEBRA, etc.
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NONLOGICAL The CAR of this variable is the list of active nonlogical nodes,
i.e., nodes containing formulas not of one of the forms (AND ...), (OR
...), (IMPLIES p q), (FORALL x p), (FORSOME x p), the negation of one of
these forms, or (NOT (NOT p)).

OFFSPRING(C) Returns the list of nodes whose SOURCE is C.

ONLYLEAVES If this variable is bound and is not NIL, it controls the
augmentation of the tableau. See PROOFGO for details.

PPRINSKEL(C) A list structure showing the tree structure of the subtableau
rooted at C is pretty-printed on the user's terminal.

PF(C) Causes the formula at node C to be pretty-printed on the user's
terminal.

PROOFGO (TERM®*) Augment the tree according to the CURRENTTYPE. If ONLYLEAVES
is bound to a2 1list of nodes, then new nodes are added below leaves in
the intersection of REACHABLEUNCLOSEDLEAVES() and ONLYLEAVES; if
ONLYLEAVES is NIL or unbound, new nodes are added below all reachable
unclosed leaves. If CURRENTTYPE is GAMMA, then GETFORMULA(CURRENT) is
instantiated to the user-supplied parameter TERM; otherwise, TERM may be
omitted. PROOFGO is automatic after a successful call of ARITH, ARITHC,
or ALGEBRA. If CURRENTTYPE is ALPHA, BETA, or DELTA, PROOFGO continues
automatically except when the parameter AUTOMATIC is NIL.

REACHABLEUNCLOSEDLEAVES(C®*) Returns a list of the unclosed leaves below C,
or, if C is omitted, below CURRENT.

REHASH(N) To be called when HCONSARRAY overflows. HCSIZE is set to
TABLESIZE(N), a twin prime not less than N. After it returns, the last
top-level tableau command should be repeated--it will not have been
correctly completed.

RIGHTBROTHER(C) Returns -1 for a rightmost brother; otherwise, the rightmost
brother of C.

RIGHTSON(C) Returns -1 if C is a leaf; otherwise, the rightmost son of C.

SAVEPROOF(FILE) The argument FILE is not evaluated. The state of the proof
is saved on the file FILE.PRF. It may be reinstated by calling
LOADPROOF . Note that printing parameters, such as FILTERS, are not
saved.

SHOW(C NUM*) The subtableau rooted at node C is output. If NUM is T, then
only node numbers are typed. Otherwise, the formula at each node is
output along with the <Key:Value> pairs stored at the node for each KEY
not an element of the controlling parameter FILTERS. The default value
of NIL suppresses typing of the keys INSTANCE, CLOSED, JUSTIFICATION,
SOURCE, and OFFSPRING. The meanings of these keys are¢ as follows:

INSTANCE: the term that was substituted for the indicial variable in the
formula at the SOURCE to get this formula.

CLOSED: the number of a node which is an ancestor of this node and
contains a formula contradicting this formula.
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JUSTIFICATION: the name of the deductive mechanism and node numbers of
any hypotheses used in obtaining this formula from its SOURCE,
¢.g2., ARITH, ALGEBRA, INSTANCE, IDENTITY, LEMMA, or TABLEAUX.

SOURCE: the node from which this node was derived.

OFFSPRING: the numbers of any nodes that have been derived from this
node.

SONS(C) Returns the lists of sons of node C.
SOURCE(C) Returns the node from which node C was derived.

UNCLOSEDLEAVES This is a list of the leaves of open branches of the tableau.

Each time new nodes are added, it is modified appropriately. See also:
WHAT().

UNDEFER(TYPES) Undefer all nodes in TYPES, a subset of (ALPHA BETA GAMMA
DELTA NONLOGICAL). If TYPES is NIL, undefer everything.

UNDO(C) C must be a node (other than the root) that the user wants to excise
from the tree. To do this soundly, all descendants of FATHER(C) must be
undone as well. The user is given this list and must confirm that these
nodes are all to be deleted. If this is confirmed, the nodes are
deleted and all nodes from which they were derived are restored to their
type lists (i.e., ALPHA, BETA, etc.).

VISIBLE(C DF* NUM¥) Print nodes between C and ROOT, starting with C.
Normally, only visible (i.e. useful and undeferred) nodes are printed.
Setting DF to T causes deferred nodes to be printed, too. Setting NUM
to T causes only node numbers to be printec. If the CURRENT node is
printed, it is marked with the symbol "@".

WHAT() Type a status report giving CURRENT, LASTNODE, CURRENTTYPE, ALPHA,
BETA, GAMMA, DELTA, NONLOGICAL, and UNCLOSEDLEAVES. Any of ALPHA, BETA,
GAMMA, DELTA, or NONLOGICAL that are empty are omitted. If nonempty,
they are typed in the format ((N1 N2 ...) D1 D2 ...) where the Ni are
active nodes of that type and the Di are deferred nodes. The output
format of UNCLOSEDLEAVES is ((R1 R2 ...) U1l U2 ...) where all the Ri
and Ui are unclosed leaves but only the Ri are reachable from CURRENT.

WFF(F) Is the [ormula F syntactically well-formed?
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Appendix C
B |- MULTICS Verification Run
1. The Search Program

START $ |

ITEM W F $ :

ITEM NN I 10 U $ ?

ITEM INDEX 1 10 U O ... 1000 P 0 $
B ITEM LOCN I 10 U O ... 1000 $
e ITEM FLG B P 0 $
E | ARRAY AA 1000 F $
ASSERTIN T $
ASSERTOUT (FLG EQ 0)
AND (INDEX EQ NN+1)
AND NOT(FORSOME(J, O LQ J AND J LQ NN
AND AA($J$) EQ VV))
OR (FLG EQ 1)
AND (LOCN GQ 0)
A AND (LOCN LQ NN)
AND AA($LOCN$) EQ VV $
L1. ASSERT FLG EQ 0
AND
(INDEX GQ 0) AND (INDEX LQ NN+1) AND
FORALL(J, NOT( O LQ J AND J LS INDEX
AND AA($J$) EQ VV)) $
IF INDEX EQ NN+1 ¢ GOTO L3 ¢
IF AA($INDEX$) EQ VV §
BEGIN LOCN=INDEX $ FLG=1 §$ GOTO L2 $ END
INDEX = INDEX + 1 §
GOTO L1 $
L2. ASSERT (FLG EQ 1) AND (INDEX EQ LOCN)
AND (0 LQ LOCN) AND (LOCN LQ NN)
AND AA($LOCN$) EQ VV $
GOTO OUT $
L3. ASSERT FLG EQ 0 AND
(INDEX EQ NN+1) AND
NOT(FORSOME(J, O LQ J AND J LQ NN AND
‘ AA($J$) EQ VV)) $
OUT. ASSERT (FLG EQ 0)
AND (INDEX EQ NN+1)
v AND NOT(FORSOME(J, O LQ J AND J LQ NN
AND AA($J$) EQ VV))
OR (FLG EQ 1) AND (0 LQ LOCN) AND (LOCN LQ NN)
AND AA($LOCN$) EQ VV ¢

B e

TERM $

!
|
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2. The Abstract Form of the Program

(MAINPROGRAM NIL
(ITEM VV (F NIL) NIL NIL)
(ITEM NN (I 10. U NIL NIL NIL) NIL NIL)
(ITEM INDEX (I 10. U NIL NIL (0. 1000.))
0. NIL)
(ITEM LOCN (I 10. U NIL NIL (0. 1000.)) NIL
NIL)
(ITEM FLG (B) 0. NIL)
(ARRAY AA (1000.) (F NIL) NIL)
(ASSERTIN T)
(ASSERTOUT
(OR (AND (AND (EQ FLG 0.)
(EQ INDEX (PLUS NN 1.)))
(NOT (FORSOME J
(AND (AND (LTQ 0. J)
(LTQ J NN))
(EQ (aA (J))
vv)))))
(AND (AND (AND (EQ FLG 1.)
(GTQ LOCN 0.))
(LTQ LOCN NN))
(EQ (AA (LOCN)) VV))))
(LABEL L1)
(ASSERT (AND (AND (AND (EQ FLG 0.)
(GTQ INDEX 0.))
(LTQ INDEX (PLUS NN 1.)))
(FORALL J
(NOT (AND (AND (LTQ 0. J)
(LT J INDEX))
(EQ (AA (J))
vv))))))
(IF (EQ INDEX (PLUS NN 1.)) (GOTO L3 NIL))
(IF (EQ (AA (INDEX)) VV)
(BEGIN (:= LOCN INDEX)
(:= FLG 1.)
(GOTO L2 NIL)))
(:= INDEX (PLUS INDEX 1.))
(GOTO L1 NIL)
(LABEL L2)
(ASSERT (AND (AND (AND (AND (EQ FLG 1.)
(EQ INDEX LOCN))
(LTQ 0. LOCN))
(LTQ LOCN NN))
(EQ (AA (LOCN)) VV)))
(GOTO OUT NIL)
(LABEL L3)
(ASSERT (AND (AND (EQ FLG 0.)
(EQ INDEX (PLUS NN 1.)))
(NOT (FORSOME J
(AND (AND (LTQ 0. J)
(LTQ J NN))
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(EQ (AA (J))
vv))))))

(LABEL 0OUT)
(ASSERT
(OR (AND (AND (EQ FLG 0.)
(EQ INDEX (PLUS NN 1.)))
(NOT (FORSOME J
(AND (AND (LTQ 0. J)
(LTQ J NN))
(EQ (AA (J)) Vv)))))
(AND (AND (AND (EQ FLG 1.)
(LTQ 0. LOCN))
(LTQ LOCN NN))
(EQ (AA (LOCN)) VV))))))

The Seeification Conties

% A1 is

(IMPLIES (AND T
(REA<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>